Semisupervised Building Instance Extraction From High-Resolution Remote Sensing Imagery

计算机科学 稳健性(进化) 人工智能 萃取(化学) 高分辨率 机器学习 数据挖掘 模式识别(心理学) 遥感 色谱法 生物化学 基因 地质学 化学
作者
Fang Fang,Xu Rui,Shengwen Li,Qingyi Hao,Kang Zheng,Kaishun Wu,Bo Wan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:1
标识
DOI:10.1109/tgrs.2023.3309918
摘要

Automatic building instance extraction from high-resolution (HR) remote sensing imagery (RSI) is crucial for urban planning and mapping. The dominant approaches are based on the full-supervised learning paradigm that requires a large number of labeled samples to train their models, which is very time-consuming and labor-intensive. To alleviate this problem, this study proposes a semi-supervised building instance extraction method that integrates teacher-student learning and pseudo-labeling to improve the building instance extraction from HR RSI. Specifically, the proposed method consists of three modules, the hybrid data augmentation (HDA) module, the pseudo label generation (PLG) module and the contour refinement (CR) module. The HDA module is designed to enrich the diversity of labeled samples to optimize the teacher model. The PLG module generates pseudo labels from unlabeled data, and to train student model with pseudo-labels. Finally, the CR module is designed to refine the contours of buildings. Experimental results on three challenging public datasets demonstrate that the proposed method achieves superior performance and exhibits great robustness at different proportions of labeled data and different building scenarios. This study provides a new approach for extracting building instances from HR RSI in scenarios with insufficient labeled samples, and a methodological reference for various applications of semi-supervised on RSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xieyusen发布了新的文献求助20
1秒前
1秒前
李健应助8秒记忆的鱼儿采纳,获得10
1秒前
魏伯安完成签到,获得积分10
2秒前
5秒前
Newt应助小火车采纳,获得10
7秒前
8秒前
feige发布了新的文献求助10
8秒前
12秒前
13秒前
英姑应助慧子采纳,获得10
15秒前
15秒前
欧阳正义发布了新的文献求助10
16秒前
17秒前
啦啦啦123完成签到,获得积分10
17秒前
log发布了新的文献求助10
18秒前
19秒前
Miss-Li发布了新的文献求助20
19秒前
汉堡包应助zhan采纳,获得20
19秒前
19秒前
我是老大应助feige采纳,获得10
19秒前
万能图书馆应助黑冰A采纳,获得10
20秒前
Shueason完成签到 ,获得积分10
21秒前
zz发布了新的文献求助20
25秒前
syqlyd完成签到 ,获得积分10
27秒前
思源应助黄晓旭采纳,获得10
28秒前
梨花酒完成签到,获得积分10
28秒前
sun发布了新的文献求助10
29秒前
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
Liufgui应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
Liufgui应助科研通管家采纳,获得10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
OKOK应助科研通管家采纳,获得20
30秒前
英姑应助科研通管家采纳,获得10
30秒前
Liufgui应助科研通管家采纳,获得10
30秒前
31秒前
大模型应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498