End-to-End Approach for Autonomous Driving: A Supervised Learning Method Using Computer Vision Algorithms for Dataset Creation

计算机科学 人工智能 人工神经网络 机器人学 机器人 图像(数学) 计算机视觉 机器学习 深度学习 机器视觉 足球机器人 算法 移动机器人 机器人控制
作者
Inês A. Ribeiro,Tiago Ribeiro,Gil Lopes,António Fernando Ribeiro
出处
期刊:Algorithms [MDPI AG]
卷期号:16 (9): 411-411 被引量:3
标识
DOI:10.3390/a16090411
摘要

This paper presents a solution for an autonomously driven vehicle (a robotic car) based on artificial intelligence using a supervised learning method. A scaled-down robotic car containing only one camera as a sensor was developed to participate in the RoboCup Portuguese Open Autonomous Driving League competition. This study is based solely on the development of this robotic car, and the results presented are only from this competition. Teams usually solve the competition problem by relying on computer vision algorithms, and no research could be found on neural network model-based assistance for vehicle control. This technique is commonly used in general autonomous driving, and the amount of research is increasing. To train a neural network, a large number of labelled images is necessary; however, these are difficult to obtain. In order to address this problem, a graphical simulator was used with an environment containing the track and the robot/car to extract images for the dataset. A classical computer vision algorithm developed by the authors processes the image data to extract relevant information about the environment and uses it to determine the optimal direction for the vehicle to follow on the track, which is then associated with the respective image-grab. Several trainings were carried out with the created dataset to reach the final neural network model; tests were performed within a simulator, and the effectiveness of the proposed approach was additionally demonstrated through experimental results in two real robotics cars, which performed better than expected. This system proved to be very successful in steering the robotic car on a road-like track, and the agent’s performance increased with the use of supervised learning methods. With computer vision algorithms, the system performed an average of 23 complete laps around the track before going off-track, whereas with assistance from the neural network model the system never went off the track.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QQQQQQQ发布了新的文献求助10
1秒前
2秒前
3秒前
聪慧的芳完成签到,获得积分10
4秒前
万能图书馆应助豪的花花采纳,获得10
4秒前
5秒前
ShengxK完成签到,获得积分10
5秒前
7秒前
不知道是谁完成签到,获得积分10
7秒前
聪慧的芳发布了新的文献求助10
8秒前
正直火车完成签到,获得积分10
8秒前
平常的凡波完成签到,获得积分10
10秒前
10秒前
muxiangrong完成签到,获得积分0
10秒前
wanna完成签到 ,获得积分10
11秒前
11秒前
CNS完成签到,获得积分10
12秒前
12秒前
wawaaaah完成签到 ,获得积分10
13秒前
一指墨发布了新的文献求助10
13秒前
pengxu完成签到,获得积分10
13秒前
13秒前
14秒前
CNS发布了新的文献求助10
16秒前
派大星发布了新的文献求助10
16秒前
1391451653完成签到,获得积分10
17秒前
yy完成签到,获得积分10
17秒前
17秒前
打野完成签到,获得积分10
18秒前
小白发布了新的文献求助10
18秒前
烟花应助高高可乐采纳,获得10
19秒前
Orange应助hahahaweiwei采纳,获得10
19秒前
amao应助朴素的SCI缔造者采纳,获得10
20秒前
20秒前
yy发布了新的文献求助10
20秒前
21秒前
21秒前
47完成签到,获得积分10
23秒前
QQQQQQQ完成签到,获得积分20
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289807
求助须知:如何正确求助?哪些是违规求助? 2926624
关于积分的说明 8428268
捐赠科研通 2597994
什么是DOI,文献DOI怎么找? 1417491
科研通“疑难数据库(出版商)”最低求助积分说明 659765
邀请新用户注册赠送积分活动 642188