End-to-End Approach for Autonomous Driving: A Supervised Learning Method Using Computer Vision Algorithms for Dataset Creation

计算机科学 人工智能 人工神经网络 机器人学 机器人 图像(数学) 计算机视觉 机器学习 深度学习 机器视觉 足球机器人 算法 移动机器人 机器人控制
作者
Inês A. Ribeiro,Tiago Ribeiro,Gil Lopes,António Fernando Ribeiro
出处
期刊:Algorithms [MDPI AG]
卷期号:16 (9): 411-411 被引量:3
标识
DOI:10.3390/a16090411
摘要

This paper presents a solution for an autonomously driven vehicle (a robotic car) based on artificial intelligence using a supervised learning method. A scaled-down robotic car containing only one camera as a sensor was developed to participate in the RoboCup Portuguese Open Autonomous Driving League competition. This study is based solely on the development of this robotic car, and the results presented are only from this competition. Teams usually solve the competition problem by relying on computer vision algorithms, and no research could be found on neural network model-based assistance for vehicle control. This technique is commonly used in general autonomous driving, and the amount of research is increasing. To train a neural network, a large number of labelled images is necessary; however, these are difficult to obtain. In order to address this problem, a graphical simulator was used with an environment containing the track and the robot/car to extract images for the dataset. A classical computer vision algorithm developed by the authors processes the image data to extract relevant information about the environment and uses it to determine the optimal direction for the vehicle to follow on the track, which is then associated with the respective image-grab. Several trainings were carried out with the created dataset to reach the final neural network model; tests were performed within a simulator, and the effectiveness of the proposed approach was additionally demonstrated through experimental results in two real robotics cars, which performed better than expected. This system proved to be very successful in steering the robotic car on a road-like track, and the agent’s performance increased with the use of supervised learning methods. With computer vision algorithms, the system performed an average of 23 complete laps around the track before going off-track, whereas with assistance from the neural network model the system never went off the track.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乔qiao发布了新的文献求助30
3秒前
WZ0904发布了新的文献求助10
4秒前
poegtam完成签到,获得积分10
5秒前
大胆盼兰发布了新的文献求助10
6秒前
wuyan204完成签到 ,获得积分10
7秒前
windcreator完成签到,获得积分10
7秒前
redondo5完成签到,获得积分0
7秒前
wangrswjx完成签到 ,获得积分10
7秒前
科研通AI5应助su采纳,获得10
7秒前
10秒前
12秒前
小二郎应助嘻嘻采纳,获得10
12秒前
yun完成签到 ,获得积分10
13秒前
13秒前
15秒前
健忘曼冬发布了新的文献求助10
15秒前
redondo完成签到,获得积分10
15秒前
momo完成签到,获得积分10
16秒前
希望天下0贩的0应助meng采纳,获得10
17秒前
龙歪歪发布了新的文献求助10
18秒前
18秒前
暮城完成签到,获得积分10
18秒前
19秒前
云墨完成签到 ,获得积分10
19秒前
21秒前
22秒前
Akim应助caoyy采纳,获得10
22秒前
23秒前
科研通AI2S应助DreamMaker采纳,获得10
23秒前
26秒前
zho发布了新的文献求助30
26秒前
26秒前
ywang发布了新的文献求助10
26秒前
ZD小草完成签到 ,获得积分10
27秒前
健忘曼冬完成签到,获得积分10
28秒前
hkl1542发布了新的文献求助50
29秒前
30秒前
31秒前
KYN完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849