A deep learning-based approach for the inverse design of the Helmholtz resonators

人工神经网络 谐振器 亥姆霍兹谐振器 亥姆霍兹自由能 过度拟合 计算机科学 反向 反向传播 声学 人工智能 算法 数学 物理 光学 几何学 量子力学
作者
Sourabh Dogra,Lokendra Singh,Aditya Nigam,Arpan Gupta
出处
期刊:Materials today communications [Elsevier BV]
卷期号:37: 107439-107439 被引量:1
标识
DOI:10.1016/j.mtcomm.2023.107439
摘要

This article discusses the use of artificial neural networks in the design of Helmholtz resonators. A large database is constructed analytically by using the classical approach for computing the transmission loss and resonance frequencies of the Helmholtz resonators. In DNN, four geometric parameters, neck radius (rn), corrected neck length (ln) (derived from neck length (hn)), cavity radius (rc), and cavity height (hn) of the Helmholtz resonator, are the final output of the designed model which are mapped with the transmission loss and resonance frequency of the Helmholtz Resonators through our proposed neural network. A Feed-forward deep neural network (DNN) based on pre-transfer learning approach is used to map feature variables to target variables. The training follows the three major steps i.e., (a) Generalised pre-training in unsupervised manner, (b) Decoder pruning and regressor head training and (c) End to End regressor training using full backpropagation. This modularized approach removes the chances of overfitting, by effectively tuning the weights at each layer of the network. Each step focuses on creating a more structured and organized model. The best combination of the weight and biases is used for the prediction of the geometric parameters. Also, the finite element study of the transmission loss and resonance frequency supports the predicted geometric parameter of the randomly chosen sample for testing with the true value of the sample. It has been found that the accuracy of the model can be improved by training in a modular way. The approach discussed in this article can be useful to bypass the complex wave analysis approach for designing the Helmholtz resonators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猴子完成签到,获得积分20
1秒前
lilililininini完成签到,获得积分20
1秒前
3秒前
4秒前
Ceka完成签到,获得积分10
5秒前
6秒前
6秒前
hyl完成签到,获得积分10
7秒前
积极的初南完成签到,获得积分10
8秒前
Livrik发布了新的文献求助10
9秒前
小小完成签到 ,获得积分10
9秒前
笨笨山芙发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Livrik完成签到,获得积分10
15秒前
小猴子关注了科研通微信公众号
15秒前
阿Q完成签到,获得积分10
16秒前
yujd完成签到,获得积分10
16秒前
鹿仪发布了新的文献求助10
16秒前
16秒前
16秒前
Orange应助好宝宝采纳,获得10
18秒前
18秒前
GL发布了新的文献求助10
19秒前
19秒前
李健应助年轻的烨华采纳,获得10
21秒前
Jasper应助zhugepengju采纳,获得10
21秒前
22秒前
酢浆草小熊完成签到 ,获得积分10
22秒前
沈昊泽完成签到,获得积分10
25秒前
陈浩发布了新的文献求助10
25秒前
26秒前
春眠不觉小小酥完成签到,获得积分10
27秒前
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035