A deep learning-based approach for the inverse design of the Helmholtz resonators

人工神经网络 谐振器 亥姆霍兹谐振器 亥姆霍兹自由能 过度拟合 计算机科学 反向 反向传播 声学 人工智能 算法 数学 物理 光学 几何学 量子力学
作者
Sourabh Dogra,Lokendra Singh,Aditya Nigam,Arpan Gupta
出处
期刊:Materials today communications [Elsevier BV]
卷期号:37: 107439-107439 被引量:1
标识
DOI:10.1016/j.mtcomm.2023.107439
摘要

This article discusses the use of artificial neural networks in the design of Helmholtz resonators. A large database is constructed analytically by using the classical approach for computing the transmission loss and resonance frequencies of the Helmholtz resonators. In DNN, four geometric parameters, neck radius (rn), corrected neck length (ln) (derived from neck length (hn)), cavity radius (rc), and cavity height (hn) of the Helmholtz resonator, are the final output of the designed model which are mapped with the transmission loss and resonance frequency of the Helmholtz Resonators through our proposed neural network. A Feed-forward deep neural network (DNN) based on pre-transfer learning approach is used to map feature variables to target variables. The training follows the three major steps i.e., (a) Generalised pre-training in unsupervised manner, (b) Decoder pruning and regressor head training and (c) End to End regressor training using full backpropagation. This modularized approach removes the chances of overfitting, by effectively tuning the weights at each layer of the network. Each step focuses on creating a more structured and organized model. The best combination of the weight and biases is used for the prediction of the geometric parameters. Also, the finite element study of the transmission loss and resonance frequency supports the predicted geometric parameter of the randomly chosen sample for testing with the true value of the sample. It has been found that the accuracy of the model can be improved by training in a modular way. The approach discussed in this article can be useful to bypass the complex wave analysis approach for designing the Helmholtz resonators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou1216发布了新的文献求助10
刚刚
1秒前
MOOTEA完成签到,获得积分10
2秒前
liuHX完成签到,获得积分10
3秒前
冷静完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
4秒前
冷傲博发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
skysleeper完成签到,获得积分10
6秒前
hailiangzheng完成签到,获得积分10
7秒前
随便取完成签到,获得积分10
7秒前
时尚俊驰发布了新的文献求助10
7秒前
勤奋的如松完成签到,获得积分0
12秒前
粥可温完成签到,获得积分10
14秒前
曾珍发布了新的文献求助10
15秒前
16秒前
hzh完成签到 ,获得积分10
17秒前
gg发布了新的文献求助10
17秒前
勤劳滑板完成签到 ,获得积分10
17秒前
Jerry完成签到,获得积分10
18秒前
MrLiu完成签到,获得积分10
19秒前
冷傲博完成签到,获得积分10
19秒前
jeff完成签到,获得积分10
19秒前
LHZ完成签到,获得积分10
19秒前
所所应助时尚俊驰采纳,获得10
20秒前
影子芳香完成签到 ,获得积分10
21秒前
22秒前
22秒前
不必要再讨论适合与否完成签到,获得积分0
23秒前
无情夏寒完成签到 ,获得积分10
24秒前
慕青应助马士全采纳,获得10
25秒前
xuzj应助科研通管家采纳,获得10
25秒前
Rubby应助科研通管家采纳,获得30
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
shiizii应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022