A deep learning-based approach for the inverse design of the Helmholtz resonators

人工神经网络 谐振器 亥姆霍兹谐振器 亥姆霍兹自由能 过度拟合 计算机科学 反向 反向传播 声学 人工智能 算法 数学 物理 光学 几何学 量子力学
作者
Sourabh Dogra,Lokendra Singh,Aditya Nigam,Arpan Gupta
出处
期刊:Materials today communications [Elsevier]
卷期号:37: 107439-107439 被引量:1
标识
DOI:10.1016/j.mtcomm.2023.107439
摘要

This article discusses the use of artificial neural networks in the design of Helmholtz resonators. A large database is constructed analytically by using the classical approach for computing the transmission loss and resonance frequencies of the Helmholtz resonators. In DNN, four geometric parameters, neck radius (rn), corrected neck length (ln) (derived from neck length (hn)), cavity radius (rc), and cavity height (hn) of the Helmholtz resonator, are the final output of the designed model which are mapped with the transmission loss and resonance frequency of the Helmholtz Resonators through our proposed neural network. A Feed-forward deep neural network (DNN) based on pre-transfer learning approach is used to map feature variables to target variables. The training follows the three major steps i.e., (a) Generalised pre-training in unsupervised manner, (b) Decoder pruning and regressor head training and (c) End to End regressor training using full backpropagation. This modularized approach removes the chances of overfitting, by effectively tuning the weights at each layer of the network. Each step focuses on creating a more structured and organized model. The best combination of the weight and biases is used for the prediction of the geometric parameters. Also, the finite element study of the transmission loss and resonance frequency supports the predicted geometric parameter of the randomly chosen sample for testing with the true value of the sample. It has been found that the accuracy of the model can be improved by training in a modular way. The approach discussed in this article can be useful to bypass the complex wave analysis approach for designing the Helmholtz resonators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷珠完成签到,获得积分10
刚刚
陈伟杰发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
mzzzz完成签到,获得积分10
4秒前
4秒前
MOD发布了新的文献求助10
6秒前
所所应助蔡蔡采纳,获得10
7秒前
崔尔蓉发布了新的文献求助10
8秒前
LiDaYang发布了新的文献求助10
9秒前
9秒前
fzhou完成签到 ,获得积分10
10秒前
10秒前
12秒前
MOD完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
17秒前
彩色的唇膏完成签到,获得积分20
19秒前
Koi完成签到 ,获得积分10
19秒前
JamesPei应助失眠的海云采纳,获得10
21秒前
研友_VZG7GZ应助爱听歌土豆采纳,获得10
26秒前
火星上的从雪完成签到,获得积分10
27秒前
28秒前
Ava应助笨笨的傲晴采纳,获得10
29秒前
29秒前
彭凯发布了新的文献求助10
32秒前
田様应助明理十三采纳,获得10
35秒前
36秒前
七月不看海完成签到,获得积分10
36秒前
39秒前
YRY完成签到 ,获得积分10
40秒前
Owen应助彭凯采纳,获得10
41秒前
大个应助飞飞飞采纳,获得10
43秒前
44秒前
Estrella发布了新的文献求助10
44秒前
丘比特应助张大拿顶呱呱采纳,获得10
45秒前
Hello应助YCD采纳,获得30
49秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351004
求助须知:如何正确求助?哪些是违规求助? 2976541
关于积分的说明 8675492
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673751
邀请新用户注册赠送积分活动 664242