医学
心力衰竭
机械通风
肺动脉高压
心脏病学
心脏移植
内科学
血流动力学
心室辅助装置
人工心脏
作者
Rei Ukita,Yatrik J. Patel,Wei Wu,Sean A. Francois,Michael Cortelli,C. Anderson Johnson,Nancy L. Cardwell,Jennifer R. Talackine,John W. Stokes,William Grogan,Meredith Mentz,Kaitlyn M. Tracy,Timothy Harris,William Tucker,Elizabeth Simonds,Caitlin T. Demarest,Keith E. Cook,David J. Skoog,Erika B. Rosenzweig,Matthew Bacchetta
标识
DOI:10.1016/j.healun.2023.10.017
摘要
Background Right heart failure is the major cause of death in pulmonary hypertension. Lung transplantation is the only long-term treatment option for patients who fail medical therapy. Due to the scarcity of donor lungs, there is a critical need to develop durable mechanical support for the failing right heart. A major design goal for durable support is to reduce the size and complexity of devices to facilitate ambulation. Toward this end, we sought to deploy wearable mechanical support technology in a sheep disease model of chronic right heart failure. Methods In 6 sheep with chronic right heart failure, a mechanical support system consisting of an extracorporeal blood pump coupled with a gas exchange unit was attached in a right atrium-to-left atrium configuration for up to 7 days. Circuit performance, hematologic parameters, and animal hemodynamics were analyzed. Results Six subjects underwent the chronic disease model for 56 to 71 days. Three of the subjects survived to the 7-day end-point for circulatory support. The circuit provided 2.8 (0.5) liter/min of flow compared to the native pulmonary blood flow of 3.5 (1.1) liter/min. The animals maintained physiologically balanced blood gas profile with a sweep flow of 1.2 (1.0) liter/min. Two animals freely ambulated while wearing the circuit. Conclusions Our novel mechanical support system provided physiologic support for a large animal model of pulmonary hypertension with right heart failure. The small footprint of the circuit and the low sweep requirement demonstrate the feasibility of this technology to enable mobile ambulatory applications. Right heart failure is the major cause of death in pulmonary hypertension. Lung transplantation is the only long-term treatment option for patients who fail medical therapy. Due to the scarcity of donor lungs, there is a critical need to develop durable mechanical support for the failing right heart. A major design goal for durable support is to reduce the size and complexity of devices to facilitate ambulation. Toward this end, we sought to deploy wearable mechanical support technology in a sheep disease model of chronic right heart failure. In 6 sheep with chronic right heart failure, a mechanical support system consisting of an extracorporeal blood pump coupled with a gas exchange unit was attached in a right atrium-to-left atrium configuration for up to 7 days. Circuit performance, hematologic parameters, and animal hemodynamics were analyzed. Six subjects underwent the chronic disease model for 56 to 71 days. Three of the subjects survived to the 7-day end-point for circulatory support. The circuit provided 2.8 (0.5) liter/min of flow compared to the native pulmonary blood flow of 3.5 (1.1) liter/min. The animals maintained physiologically balanced blood gas profile with a sweep flow of 1.2 (1.0) liter/min. Two animals freely ambulated while wearing the circuit. Our novel mechanical support system provided physiologic support for a large animal model of pulmonary hypertension with right heart failure. The small footprint of the circuit and the low sweep requirement demonstrate the feasibility of this technology to enable mobile ambulatory applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI