A machine learning algorithm-based model for predicting the risk of non-suicidal self-injury among adolescents in western China: A multicentre cross-sectional study

逻辑回归 列线图 焦虑 毒物控制 临床心理学 心理学 多元统计 伤害预防 人口 萧条(经济学) 自杀预防 医学 精神科 环境卫生 机器学习 计算机科学 内科学 经济 宏观经济学
作者
Yunling Zhong,Jinlong He,Jing Luo,Jiayu Zhao,Yu Cen,Yuqin Song,Yuhang Wu,Cen Lin,Lu Pan,Jiaming Luo
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:345: 369-377 被引量:22
标识
DOI:10.1016/j.jad.2023.10.110
摘要

The prevalence of non-suicidal self-injurious (NSSI) in adolescents is high. However, few studies exist to predict NSSI in this population. This study employed a machine learning algorithm to develop a predictive model, aiming to more accurately assess the risk of NSSI in Chinese adolescents. Sociodemographic, psychological data were collected in 50 schools in western China. We constructed eXtreme Gradient Boosting (XGBoost) model and multivariate logistic regression model to predict the risk of NSSI and nomograms are plotted. Data from 13,304 adolescents were used for model development, with an average age of 13.00 ± 2.17 years; 617 individuals (4.6 %) reported non-suicidal self-injury (NSSI) behaviors. The results of the XGBoost model showed that depression and anxiety were the top two predictors of NSSI in adolescents. The results of the multivariate logistic regression model showed that the risk factors for adolescent NSSI behaviors include: gender (being female), Age, Living with whom (father), History of psychiatric consultation, Stress, Depression, Anxiety, Tolerance, Emotion abreaction. The XGBoost prediction and multivariate logistic regression model showed good predictive ability. Nomograms can serve as clinical tools to assist in intervention measures, helping adolescents reduce NSSI behaviors and improve their mental and physical well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助满_1999采纳,获得10
刚刚
刚刚
刚刚
金光闪闪发布了新的文献求助10
刚刚
1秒前
1秒前
decimalpoint发布了新的文献求助30
1秒前
MMM发布了新的文献求助10
1秒前
长情尔曼发布了新的文献求助10
1秒前
科研通AI5应助heyudian采纳,获得30
2秒前
Winnie哈哈哈哈哈完成签到,获得积分10
2秒前
zzzzzzzzzzzzb完成签到,获得积分10
2秒前
七月发布了新的文献求助10
4秒前
是神完成签到,获得积分20
5秒前
lii完成签到,获得积分10
5秒前
笑看风云完成签到,获得积分10
5秒前
ILY发布了新的文献求助30
7秒前
7秒前
wenjian发布了新的文献求助10
7秒前
xl_c完成签到,获得积分10
8秒前
长情尔曼完成签到,获得积分10
8秒前
8秒前
9秒前
爱笑莞应助小桐维尼采纳,获得10
10秒前
石墨烯完成签到,获得积分10
10秒前
10秒前
leetaisan发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
智守奇安完成签到,获得积分10
12秒前
遇事不顺吃吃吃给遇事不顺吃吃吃的求助进行了留言
13秒前
zz完成签到,获得积分10
13秒前
歪猴发布了新的文献求助10
13秒前
13秒前
13秒前
陈少华发布了新的文献求助10
14秒前
李文艳完成签到,获得积分10
14秒前
jack发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560391
求助须知:如何正确求助?哪些是违规求助? 3986563
关于积分的说明 12343059
捐赠科研通 3657249
什么是DOI,文献DOI怎么找? 2014798
邀请新用户注册赠送积分活动 1049621
科研通“疑难数据库(出版商)”最低求助积分说明 937803