光化学
密度泛函理论
催化作用
系统间交叉
激发态
化学
镁
光催化
氢键
氢
分子
计算化学
有机化学
核物理学
单重态
物理
作者
Naitian Zhang,Yuehui Li,Wenzhe Shang,Xuedan Song,Wei Liu,Ce Hao
摘要
In this paper, we report a joint experimental and computational study to elaborate the mechanism for the photocatalytic CO2 reduction reaction (CO2RR). Experimental results indicate that the catalyst (sodium magnesium chlorophyll, MgChlNa2), which has a well-defined structure for calculation and understanding, can achieve the photoreduction of CO2 to CO only using water as a dispersant, without adding any photosensitizer or sacrificial agent. Subsequently, a series of structural models of the hydrogen-bonded complexes of the catalyst were constructed and outlined via utilizing density functional theory (DFT) calculations, including photophysical and photochemical processes. The results confirm that the rate-limiting step of the whole CO2RR was the intersystem crossing process. The electron and proton transfers involved in photophysical and photochemical processes are induced by hydrogen bonds in the excited states. The combination of experiments and calculations will provide an important reference for the design of high-efficiency photocatalysts in the photocatalytic CO2RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI