Urinary Bladder Volume Reconstruction Based on Bioimpedance Measurements: Ex Vivo and In Vivo Validation Through Implanted Patch and Needle Electrodes

生物医学工程 体积热力学 离体 算法 电极 材料科学 体内 计算机科学 数学 医学 物理 生物技术 量子力学 生物
作者
Federica Semproni,Veronica Iacovacci,Stefania Musco,Arianna Menciassi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (24): 31287-31296
标识
DOI:10.1109/jsen.2023.3330978
摘要

Restoring bladder sensation in patients with bladder dysfunctions by performing urinary volume monitoring is an ambitious goal. The bioimpedance technique has shown promising results in wearable solutions but long-term validation and implantable systems are not available, yet. In this work, we propose to implant commercial bioimpedance sensors on bladder walls to perform bladder volume estimation. Two commercial sensor types (Ag/AgCl patch and needle electrodes) were selected to this purpose. Injected current frequency of 1.337 MHz and electrodes pair on the same face of the bladder allowed to correlate the changes in impedance with increasing volumes. Two volume reconstruction algorithms have been proposed, based on the direct correlation between bioimpedance readings and bladder volume (Algorithm A) or bioimpedance readings and inter-electrode distance (Algorithm B, bladder shape approximated to a sphere). For both algorithms, a better fit with a second-degree fitting polynomial was obtained. Algorithm A obtained lower estimation errors with an average of 20.35% and 21.98% (volumes greater than 150 ml) for patch and needle electrodes, respectively. The variations in ions concentration led to a slight deterioration of volume estimation, however the presence of tissues surrounding the bladder did not influence the performance. Although Algorithm B was less affected by the experimental conditions and inter-subject biological variability, it featured higher estimation errors. In vivo validation on suine model showed average errors of 29.36% (volumes greater than 100 ml), demonstrating the potential of the proposed solution and paving the way towards a novel implantable volume monitoring system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
fatal完成签到,获得积分10
2秒前
过分动真发布了新的文献求助20
2秒前
高贵的夜南完成签到,获得积分10
2秒前
火星上的菲鹰给冰激凌UP的求助进行了留言
2秒前
3秒前
尺素寸心发布了新的文献求助10
4秒前
orixero应助BOSLobster采纳,获得10
5秒前
orixero应助yatou5651采纳,获得10
6秒前
在水一方应助卡卡采纳,获得10
6秒前
追寻羿完成签到 ,获得积分10
7秒前
hhzz发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
10秒前
科研通AI2S应助好玩和有趣采纳,获得10
10秒前
美丽跳跳糖完成签到,获得积分20
10秒前
10秒前
丘比特应助llll采纳,获得10
11秒前
11秒前
迟大猫应助su采纳,获得10
11秒前
发嗲的戎完成签到 ,获得积分10
12秒前
12秒前
内向凌兰完成签到,获得积分10
12秒前
12秒前
zhappy完成签到,获得积分10
13秒前
satchzhao发布了新的文献求助10
13秒前
友好的妍完成签到 ,获得积分10
14秒前
香山叶正红完成签到 ,获得积分10
15秒前
TOM发布了新的文献求助10
15秒前
沙耶酱完成签到,获得积分10
15秒前
赢赢发布了新的文献求助10
16秒前
17秒前
尺素寸心完成签到,获得积分10
18秒前
19秒前
老实不尤完成签到,获得积分10
20秒前
CCL应助mammoth采纳,获得40
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808