A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price

计算机科学 区间(图论) 期货合约 数据挖掘 潜在Dirichlet分配 概率预测 机器学习 人工智能 计量经济学 主题模型 数学 概率逻辑 组合数学 金融经济学 经济
作者
Rui Luo,Jinpei Liu,Piao Wang,Zhifu Tao,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (2): 366-390 被引量:11
标识
DOI:10.1002/for.3035
摘要

Abstract Accurate soybean futures price prediction is critical to related agricultural production, warehousing, and trading. Interval forecasting can avoid the loss of fluctuation information and evaluate the uncertainty of futures prices. However, most previous studies only consider the single‐type auxiliary variable, which will cause the deficiency of valued information. Moreover, the research concentrating on internet search index ignores the search habits of investors, resulting in subjectivity in keyword selection. Therefore, a novel multisource data‐driven combined forecasting model is proposed that consists of four parts: unstructured data processing, interval multi‐scale decomposition, interval combination forecasting, and model evaluation. First, sentiment analysis technology is used to convert news text into sentiment scores. The internet search keyword screening method based on latent Dirichlet allocation is then constructed to achieve the quantification of investor attention. Second, a decomposition method is applied to decompose the original interval‐valued series into finite more stationary components. Third, interval prediction results are obtained by machine learning‐based multiple predictors. Finally, the model evaluation module comprising error evaluation indicators and comparison experiments is presented to verify the effectiveness. The experimental results show that the proposed model has higher prediction accuracy, which indicates that multisource data and designed keyword screening methods can enhance the forecasting performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WW完成签到 ,获得积分10
1秒前
zZZ完成签到 ,获得积分10
2秒前
yao发布了新的文献求助30
2秒前
冷艳的寻冬完成签到,获得积分10
2秒前
3秒前
万能图书馆应助段yt采纳,获得10
3秒前
3秒前
4秒前
NN完成签到,获得积分10
5秒前
5秒前
Ty完成签到,获得积分10
5秒前
DWQ完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
LLL完成签到,获得积分10
8秒前
jony发布了新的文献求助10
8秒前
killer完成签到,获得积分20
8秒前
9秒前
国家栋梁发布了新的文献求助10
9秒前
米线儿完成签到,获得积分10
10秒前
汤襄发布了新的文献求助10
11秒前
11秒前
DWQ发布了新的文献求助10
11秒前
11秒前
霁星河完成签到,获得积分10
13秒前
orixero应助caas6采纳,获得10
13秒前
13秒前
14秒前
14秒前
任侠传发布了新的文献求助10
14秒前
善良初蝶完成签到,获得积分10
14秒前
14秒前
研友_VZG7GZ应助聪慧石头采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
无语完成签到,获得积分10
16秒前
陈陈发布了新的文献求助20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108