AUTOMATIC POLYP SEMANTIC SEGMENTATION USING WIRELESS CAPSULE ENDOSCOPY IMAGES WITH VARIOUS CONVOLUTIONAL NEURAL NETWORK AND OPTIMIZATION TECHNIQUES: A COMPARISON AND PERFORMANCE EVALUATION

计算机科学 卷积神经网络 人工智能 分割 排名(信息检索) 随机梯度下降算法 模式识别(心理学) 人工神经网络 深度学习 图像分割 机器学习
作者
Jothiraj Selvaraj,A. K. Jayanthy
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:35 (06) 被引量:6
标识
DOI:10.4015/s1016237223500266
摘要

Colorectal cancer (CRC), ranking third most prevalent cancer type, can be diagnosed with the detection of polyps in the colon and rectum through endoscopic procedures facilitating prompt treatment. During visualization of gastrointestinal tract by the physician, there is high probability of miss rates and reviewing of the images is laborious. Automatic segmentation and detection are enabled with the convolutional neural networks (CNN). We segmented the polyps from the wireless capsule endoscopy images of Kvasir dataset using various CNN models. We have presented nine optimizers for each architecture and evaluated the performance parameters. The optimizers were graded based on the performance metrics in order to provide an insight for the researchers on the selection of optimizer and architecture. On comparison of the performance metrics of the pretrained and U-net-based architecture, the Adaptive Moment Estimation (ADAM) and Root Mean Squared Propagation (RMSPROP) optimizers received the highest score of 43 in the ranking, DiffGrad and Nesterov-accelerated Adaptive Moment Estimation (NADAM) ranked second with the score of 13, the Adaptive Delta (ADADELTA) ranked third with a score of 2, whereas Stochastic Gradient Descent (SGD), Adaptive Gradient Descent (ADAGRAD), and Adaptive Max (ADAMAX) optimizers performed least in the evaluation. Based on the deep learning application, the optimizer employed varies by considering computational speed, memory and computational time. This preliminary research provides the necessary key information for consideration in the development of an architecture with utilization of an optimizer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨旭完成签到,获得积分10
1秒前
完美世界应助无聊的小洁采纳,获得10
2秒前
2秒前
wifi发布了新的文献求助10
2秒前
FashionBoy应助Daisylee采纳,获得10
3秒前
李卓发布了新的文献求助10
3秒前
罐罐儿应助lliuqiq采纳,获得10
3秒前
着急的洋葱完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Lexi完成签到 ,获得积分10
4秒前
Eason王发布了新的文献求助10
4秒前
张真牛发布了新的文献求助10
5秒前
稳重香芦发布了新的文献求助10
5秒前
友好访蕊发布了新的文献求助10
5秒前
5秒前
清秋1001发布了新的文献求助20
6秒前
万能图书馆应助南风采纳,获得10
6秒前
清脆晓曼完成签到,获得积分10
6秒前
gilderf完成签到,获得积分10
7秒前
大个应助明天会更美好采纳,获得10
7秒前
yangbinsci0827完成签到,获得积分10
7秒前
大圣来也完成签到 ,获得积分10
7秒前
开朗的钥匙完成签到 ,获得积分10
7秒前
7秒前
无花果应助yehuitao采纳,获得10
7秒前
谢大喵完成签到,获得积分10
7秒前
阔达的茉莉应助涛涛采纳,获得10
7秒前
气质复杂完成签到,获得积分10
7秒前
8秒前
英俊的铭应助mengmeng采纳,获得10
8秒前
Ava应助bingzichuan采纳,获得10
8秒前
Gin发布了新的文献求助10
8秒前
倪满分完成签到,获得积分10
9秒前
llt完成签到,获得积分10
9秒前
善学以致用应助高贵振家采纳,获得10
9秒前
9秒前
专业中药人完成签到,获得积分10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444