AUTOMATIC POLYP SEMANTIC SEGMENTATION USING WIRELESS CAPSULE ENDOSCOPY IMAGES WITH VARIOUS CONVOLUTIONAL NEURAL NETWORK AND OPTIMIZATION TECHNIQUES: A COMPARISON AND PERFORMANCE EVALUATION

计算机科学 卷积神经网络 人工智能 分割 排名(信息检索) 随机梯度下降算法 模式识别(心理学) 人工神经网络 深度学习 图像分割 机器学习
作者
Jothiraj Selvaraj,A. K. Jayanthy
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [World Scientific]
卷期号:35 (06) 被引量:6
标识
DOI:10.4015/s1016237223500266
摘要

Colorectal cancer (CRC), ranking third most prevalent cancer type, can be diagnosed with the detection of polyps in the colon and rectum through endoscopic procedures facilitating prompt treatment. During visualization of gastrointestinal tract by the physician, there is high probability of miss rates and reviewing of the images is laborious. Automatic segmentation and detection are enabled with the convolutional neural networks (CNN). We segmented the polyps from the wireless capsule endoscopy images of Kvasir dataset using various CNN models. We have presented nine optimizers for each architecture and evaluated the performance parameters. The optimizers were graded based on the performance metrics in order to provide an insight for the researchers on the selection of optimizer and architecture. On comparison of the performance metrics of the pretrained and U-net-based architecture, the Adaptive Moment Estimation (ADAM) and Root Mean Squared Propagation (RMSPROP) optimizers received the highest score of 43 in the ranking, DiffGrad and Nesterov-accelerated Adaptive Moment Estimation (NADAM) ranked second with the score of 13, the Adaptive Delta (ADADELTA) ranked third with a score of 2, whereas Stochastic Gradient Descent (SGD), Adaptive Gradient Descent (ADAGRAD), and Adaptive Max (ADAMAX) optimizers performed least in the evaluation. Based on the deep learning application, the optimizer employed varies by considering computational speed, memory and computational time. This preliminary research provides the necessary key information for consideration in the development of an architecture with utilization of an optimizer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamy完成签到,获得积分10
刚刚
Yfvonne完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
yxy发布了新的文献求助10
3秒前
益生菌发布了新的文献求助10
3秒前
踏实的酸奶完成签到,获得积分10
3秒前
Coldpal完成签到,获得积分10
3秒前
虎啊虎啊发布了新的文献求助10
3秒前
ljl完成签到,获得积分10
3秒前
lalala完成签到,获得积分20
3秒前
ybb完成签到,获得积分10
3秒前
球球了完成签到,获得积分10
4秒前
青易发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
小海发布了新的文献求助10
5秒前
joysa完成签到,获得积分10
6秒前
Jasper应助余生采纳,获得10
6秒前
yiyi完成签到,获得积分10
6秒前
Georges-09完成签到,获得积分10
6秒前
爱因斯宣发布了新的文献求助10
6秒前
谦让的莆完成签到 ,获得积分10
7秒前
7秒前
苏silence发布了新的文献求助10
8秒前
8秒前
科研小土豆完成签到,获得积分10
10秒前
小金鱼儿完成签到,获得积分10
10秒前
Danielle完成签到,获得积分10
10秒前
Paddi完成签到,获得积分10
11秒前
11秒前
Sxq完成签到,获得积分10
11秒前
liuhuo完成签到,获得积分10
11秒前
虎啊虎啊完成签到,获得积分10
11秒前
小海完成签到,获得积分10
12秒前
思源应助任冰冰采纳,获得30
12秒前
完美的凡灵完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582