AUTOMATIC POLYP SEMANTIC SEGMENTATION USING WIRELESS CAPSULE ENDOSCOPY IMAGES WITH VARIOUS CONVOLUTIONAL NEURAL NETWORK AND OPTIMIZATION TECHNIQUES: A COMPARISON AND PERFORMANCE EVALUATION

计算机科学 卷积神经网络 人工智能 分割 排名(信息检索) 随机梯度下降算法 模式识别(心理学) 人工神经网络 深度学习 图像分割 机器学习
作者
Jothiraj Selvaraj,A. K. Jayanthy
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:35 (06) 被引量:6
标识
DOI:10.4015/s1016237223500266
摘要

Colorectal cancer (CRC), ranking third most prevalent cancer type, can be diagnosed with the detection of polyps in the colon and rectum through endoscopic procedures facilitating prompt treatment. During visualization of gastrointestinal tract by the physician, there is high probability of miss rates and reviewing of the images is laborious. Automatic segmentation and detection are enabled with the convolutional neural networks (CNN). We segmented the polyps from the wireless capsule endoscopy images of Kvasir dataset using various CNN models. We have presented nine optimizers for each architecture and evaluated the performance parameters. The optimizers were graded based on the performance metrics in order to provide an insight for the researchers on the selection of optimizer and architecture. On comparison of the performance metrics of the pretrained and U-net-based architecture, the Adaptive Moment Estimation (ADAM) and Root Mean Squared Propagation (RMSPROP) optimizers received the highest score of 43 in the ranking, DiffGrad and Nesterov-accelerated Adaptive Moment Estimation (NADAM) ranked second with the score of 13, the Adaptive Delta (ADADELTA) ranked third with a score of 2, whereas Stochastic Gradient Descent (SGD), Adaptive Gradient Descent (ADAGRAD), and Adaptive Max (ADAMAX) optimizers performed least in the evaluation. Based on the deep learning application, the optimizer employed varies by considering computational speed, memory and computational time. This preliminary research provides the necessary key information for consideration in the development of an architecture with utilization of an optimizer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOAN应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
婵婵完成签到,获得积分10
1秒前
1秒前
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
自由白凡完成签到,获得积分10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
田様应助ninomae采纳,获得10
2秒前
2秒前
雍雍完成签到 ,获得积分10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
纸万完成签到,获得积分10
5秒前
如意修洁完成签到 ,获得积分20
5秒前
5秒前
香蕉觅云应助浮浮世世采纳,获得10
6秒前
欣慰的小甜瓜完成签到 ,获得积分10
6秒前
7秒前
脑洞疼应助小蘑菇采纳,获得10
7秒前
虚心沂完成签到,获得积分10
8秒前
身为风帆发布了新的文献求助10
8秒前
9秒前
开心使者发布了新的文献求助10
9秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978