AUTOMATIC POLYP SEMANTIC SEGMENTATION USING WIRELESS CAPSULE ENDOSCOPY IMAGES WITH VARIOUS CONVOLUTIONAL NEURAL NETWORK AND OPTIMIZATION TECHNIQUES: A COMPARISON AND PERFORMANCE EVALUATION

计算机科学 卷积神经网络 人工智能 分割 排名(信息检索) 随机梯度下降算法 模式识别(心理学) 人工神经网络 深度学习 图像分割 机器学习
作者
Jothiraj Selvaraj,A. K. Jayanthy
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:35 (06) 被引量:6
标识
DOI:10.4015/s1016237223500266
摘要

Colorectal cancer (CRC), ranking third most prevalent cancer type, can be diagnosed with the detection of polyps in the colon and rectum through endoscopic procedures facilitating prompt treatment. During visualization of gastrointestinal tract by the physician, there is high probability of miss rates and reviewing of the images is laborious. Automatic segmentation and detection are enabled with the convolutional neural networks (CNN). We segmented the polyps from the wireless capsule endoscopy images of Kvasir dataset using various CNN models. We have presented nine optimizers for each architecture and evaluated the performance parameters. The optimizers were graded based on the performance metrics in order to provide an insight for the researchers on the selection of optimizer and architecture. On comparison of the performance metrics of the pretrained and U-net-based architecture, the Adaptive Moment Estimation (ADAM) and Root Mean Squared Propagation (RMSPROP) optimizers received the highest score of 43 in the ranking, DiffGrad and Nesterov-accelerated Adaptive Moment Estimation (NADAM) ranked second with the score of 13, the Adaptive Delta (ADADELTA) ranked third with a score of 2, whereas Stochastic Gradient Descent (SGD), Adaptive Gradient Descent (ADAGRAD), and Adaptive Max (ADAMAX) optimizers performed least in the evaluation. Based on the deep learning application, the optimizer employed varies by considering computational speed, memory and computational time. This preliminary research provides the necessary key information for consideration in the development of an architecture with utilization of an optimizer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助李平采纳,获得10
刚刚
上官若男应助hyt采纳,获得10
刚刚
刚刚
调皮的晓凡完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
踏实的语山完成签到 ,获得积分10
1秒前
英吉利25发布了新的文献求助10
1秒前
大模型应助科研锐采纳,获得10
1秒前
飘逸太英发布了新的文献求助10
2秒前
2秒前
Oscillator发布了新的文献求助10
3秒前
3秒前
Criminology34应助陈小明采纳,获得10
3秒前
草帽完成签到,获得积分10
4秒前
安琪发布了新的文献求助10
4秒前
负责玉米发布了新的文献求助30
5秒前
ronll发布了新的文献求助10
6秒前
七里海完成签到,获得积分10
7秒前
科研通AI6应助安妮采纳,获得10
7秒前
芝士椰果发布了新的文献求助10
7秒前
记得笑发布了新的文献求助10
8秒前
帅帅完成签到,获得积分10
8秒前
甜蜜的大象完成签到 ,获得积分10
8秒前
风清扬发布了新的文献求助10
8秒前
8秒前
9秒前
顺利秋灵完成签到,获得积分20
10秒前
10秒前
LZS完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
科研锐发布了新的文献求助10
13秒前
zws发布了新的文献求助10
14秒前
张艺馨完成签到,获得积分10
14秒前
飘逸太英完成签到,获得积分20
14秒前
14秒前
小鲨鱼完成签到,获得积分20
15秒前
善学以致用应助记得笑采纳,获得10
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277