亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

STTRE: A Spatio-Temporal Transformer with Relative Embeddings for multivariate time series forecasting

多元统计 计算机科学 时间序列 人工智能 变压器 数据挖掘 机器学习 工程类 电气工程 电压
作者
Azad Deihim,Eduardo Alonso,Dimitra Apostolopoulou
出处
期刊:Neural Networks [Elsevier BV]
卷期号:168: 549-559 被引量:11
标识
DOI:10.1016/j.neunet.2023.09.039
摘要

The prevalence of multivariate time series data across several disciplines fosters a demand and, subsequently, significant growth in the research and advancement of multivariate time series analysis. Drawing inspiration from a popular natural language processing model, the Transformer, we propose the Spatio-Temporal Transformer with Relative Embeddings (STTRE) to address multivariate time series forecasting. This work primarily focuses on developing a Transformer-based framework that can fully exploit the spatio-temporal nature of a multivariate time series by incorporating several of the Transformer's key components, but with augmentations that allow them to excel in multivariate time series forecasting. Current Transformer-based models for multivariate time series often neglect the data's spatial component(s) and utilize absolute position embeddings as their only means to detect the data's temporal component(s), which we show is flawed for time series applications. The lack of emphasis on fully exploiting the spatio-temporality of the data can incur subpar results in terms of accuracy. We redesign relative position representations, which we rename to relative embeddings, to unveil a new method for detecting latent spatial, temporal, and spatio-temporal dependencies more effectively than previous Transformer-based models. We couple these relative embeddings with a restructuring of the Transformer's primary sequence learning mechanism, multi-head attention, in a way that allows for full utilization of relative embeddings, thus achieving up to a 24% improvement in accuracy over other state-of-the-art multivariate time series models on a comprehensive selection of publicly available multivariate time series forecasting datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
56秒前
领导范儿应助gszy1975采纳,获得10
1分钟前
靓丽的熠彤完成签到,获得积分10
2分钟前
2分钟前
四氧化三铁完成签到,获得积分10
2分钟前
2分钟前
云云发布了新的文献求助10
2分钟前
wuju完成签到,获得积分10
2分钟前
Raunio完成签到,获得积分10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
Tales完成签到 ,获得积分10
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
武雨珍完成签到,获得积分10
4分钟前
5分钟前
gszy1975发布了新的文献求助10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
FashionBoy应助thchiang采纳,获得10
5分钟前
852应助陈杰采纳,获得10
6分钟前
科研通AI5应助马良采纳,获得10
7分钟前
小米的稻田完成签到 ,获得积分10
7分钟前
7分钟前
马良发布了新的文献求助10
7分钟前
Jasper应助专注的子骞采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
DPmmm发布了新的文献求助10
8分钟前
8分钟前
现实的俊驰完成签到 ,获得积分10
8分钟前
Akim应助Frank采纳,获得10
10分钟前
10分钟前
再给我来点抽象的应助Jim采纳,获得10
11分钟前
科研通AI5应助榆果子采纳,获得10
11分钟前
fufufu123完成签到 ,获得积分10
12分钟前
孙孙应助Jim采纳,获得30
12分钟前
充电宝应助EliotFang采纳,获得10
13分钟前
13分钟前
陈杰发布了新的文献求助10
13分钟前
kuoping完成签到,获得积分0
13分钟前
彭于晏应助科研通管家采纳,获得10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582395
求助须知:如何正确求助?哪些是违规求助? 4000118
关于积分的说明 12382192
捐赠科研通 3675087
什么是DOI,文献DOI怎么找? 2025689
邀请新用户注册赠送积分活动 1059330
科研通“疑难数据库(出版商)”最低求助积分说明 946014