STTRE: A Spatio-Temporal Transformer with Relative Embeddings for multivariate time series forecasting

多元统计 计算机科学 时间序列 人工智能 变压器 数据挖掘 机器学习 工程类 电气工程 电压
作者
Azad Deihim,Eduardo Alonso,Dimitra Apostolopoulou
出处
期刊:Neural Networks [Elsevier]
卷期号:168: 549-559 被引量:11
标识
DOI:10.1016/j.neunet.2023.09.039
摘要

The prevalence of multivariate time series data across several disciplines fosters a demand and, subsequently, significant growth in the research and advancement of multivariate time series analysis. Drawing inspiration from a popular natural language processing model, the Transformer, we propose the Spatio-Temporal Transformer with Relative Embeddings (STTRE) to address multivariate time series forecasting. This work primarily focuses on developing a Transformer-based framework that can fully exploit the spatio-temporal nature of a multivariate time series by incorporating several of the Transformer's key components, but with augmentations that allow them to excel in multivariate time series forecasting. Current Transformer-based models for multivariate time series often neglect the data's spatial component(s) and utilize absolute position embeddings as their only means to detect the data's temporal component(s), which we show is flawed for time series applications. The lack of emphasis on fully exploiting the spatio-temporality of the data can incur subpar results in terms of accuracy. We redesign relative position representations, which we rename to relative embeddings, to unveil a new method for detecting latent spatial, temporal, and spatio-temporal dependencies more effectively than previous Transformer-based models. We couple these relative embeddings with a restructuring of the Transformer's primary sequence learning mechanism, multi-head attention, in a way that allows for full utilization of relative embeddings, thus achieving up to a 24% improvement in accuracy over other state-of-the-art multivariate time series models on a comprehensive selection of publicly available multivariate time series forecasting datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaopeng完成签到,获得积分10
刚刚
kirito1211完成签到,获得积分10
1秒前
大个应助真诚采纳,获得10
1秒前
1秒前
小明应助发财达人采纳,获得10
1秒前
情怀应助无心的芸采纳,获得10
2秒前
库梵发布了新的文献求助10
2秒前
3秒前
CodeCraft应助小脸红扑扑采纳,获得10
3秒前
缓慢采柳完成签到,获得积分10
3秒前
最初的远方完成签到,获得积分10
4秒前
许亦发布了新的文献求助10
4秒前
6秒前
着急的cc完成签到,获得积分10
6秒前
淡然岂愈完成签到,获得积分20
7秒前
摩奥锚完成签到 ,获得积分10
9秒前
芝士发布了新的文献求助10
9秒前
10秒前
缓慢荔枝发布了新的文献求助10
11秒前
electricelectric应助蛙蛙大王采纳,获得30
11秒前
12秒前
无奈的迎丝完成签到,获得积分10
12秒前
12秒前
所所应助欢喜的绿竹采纳,获得10
13秒前
章宇程发布了新的文献求助10
13秒前
完美世界应助啦啦采纳,获得10
14秒前
搜集达人应助何雨航采纳,获得10
14秒前
14秒前
ztm147关注了科研通微信公众号
15秒前
老福贵儿应助温柔觅松采纳,获得10
15秒前
15秒前
赘婿应助拼搏半梦采纳,获得10
16秒前
风枞完成签到 ,获得积分10
16秒前
16秒前
风吹过完成签到,获得积分10
17秒前
刚睡醒发布了新的文献求助10
17秒前
18秒前
19秒前
hqq完成签到,获得积分20
19秒前
winboo完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299901
求助须知:如何正确求助?哪些是违规求助? 4447967
关于积分的说明 13844251
捐赠科研通 4333585
什么是DOI,文献DOI怎么找? 2378948
邀请新用户注册赠送积分活动 1374119
关于科研通互助平台的介绍 1339733