Medical Boundary Diffusion Model for Skin Lesion Segmentation

计算机科学 分割 人工智能 边界(拓扑) 图像分割 模式识别(心理学) 计算机视觉 数学 数学分析
作者
Jiacheng Wang,Jing Yang,Qichao Zhou,Liansheng Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 427-436 被引量:6
标识
DOI:10.1007/978-3-031-43901-8_41
摘要

Skin lesion segmentation in dermoscopy images has seen recent success due to advancements in multi-scale boundary attention and feature-enhanced modules. However, existing methods that rely on end-to-end learning paradigms, which directly input images and output segmentation maps, often struggle with extremely hard boundaries, such as those found in lesions of particularly small or large sizes. This limitation arises because the receptive field and local context extraction capabilities of any finite model are inevitably limited, and the acquisition of additional expert-labeled data required for larger models is costly. Motivated by the impressive advances of diffusion models that regard image synthesis as a parameterized chain process, we introduce a novel approach that formulates skin lesion segmentation as a boundary evolution process to thoroughly investigate the boundary knowledge. Specifically, we propose the Medical Boundary Diffusion Model (MB-Diff), which starts with a randomly sampled Gaussian noise, and the boundary evolves within finite times to obtain a clear segmentation map. First, we propose an efficient multi-scale image guidance module to constrain the boundary evolution, which makes the evolution direction suit our desired lesions. Second, we propose an evolution uncertainty-based fusion strategy to refine the evolution results and yield more precise lesion boundaries. We evaluate the performance of our model on two popular skin lesion segmentation datasets and compare our model to the latest CNN and transformer models. Our results demonstrate that our model outperforms existing methods in all metrics and achieves superior performance on extremely challenging skin lesions. The proposed approach has the potential to significantly enhance the accuracy and reliability of skin lesion segmentation, providing critical information for diagnosis and treatment. All resources will be publicly available at https://github.com/jcwang123/MBDiff .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
liamddd完成签到 ,获得积分10
3秒前
半农完成签到,获得积分0
3秒前
Sun完成签到,获得积分20
4秒前
4秒前
啊啾发布了新的文献求助60
4秒前
5秒前
Wwww发布了新的文献求助10
5秒前
shadow完成签到,获得积分10
5秒前
5秒前
无语的宛白完成签到 ,获得积分10
6秒前
笑点低的衬衫完成签到,获得积分10
6秒前
人123456发布了新的文献求助10
7秒前
DG发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助52hzzz采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
lily发布了新的文献求助10
9秒前
孙智远完成签到 ,获得积分10
11秒前
彭凯发布了新的文献求助10
12秒前
超级的绿凝完成签到,获得积分10
13秒前
李健应助小叶子采纳,获得10
14秒前
无语的宛白关注了科研通微信公众号
14秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
星辰大海应助1101592875采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得30
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
EMC应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131