Sleep Apnea Prediction Using Deep Learning

人工智能 深度学习 计算机科学 稳健性(进化) 睡眠(系统调用) 睡眠呼吸暂停 卷积神经网络 阻塞性睡眠呼吸暂停 呼吸 呼吸暂停 灵敏度(控制系统) 机器学习 呼吸不足 模式识别(心理学) 多导睡眠图 医学 内科学 麻醉 操作系统 工程类 基因 化学 生物化学 电子工程
作者
Eileen Wang,Irena Koprinska,Bryn Jeffries
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5644-5654 被引量:18
标识
DOI:10.1109/jbhi.2023.3305980
摘要

Obstructive sleep apnea (OSA) is a sleep disorder that causes partial or complete cessation of breathing during an individual's sleep. Various methods have been proposed to automatically detect OSA events, but little work has focused on predicting such events in advance, which is useful for the development of devices that regulate breathing during a patient's sleep. We propose four methods for sleep apnea prediction based on convolutional and long short-term memory neural networks (1D-CNN, ConvLSTM, 1D-CNN-LSTM and 2D-CNN-LSTM), which use raw data from three respiratory signals (nasal flow, abdominal and thoracic) sampled at 32 Hz, without any human-engineered features. We predict OSA (apnea or hypopnea) and normal breathing events 30 seconds ahead using the prior 90 seconds' data. Our results on a dataset containing over 46,000 examples from 1,507 subjects show that all four models achieved promising accuracy ( 81%). The 1D-CNN-LSTM and 2D-CNN-LSTM were the best two performing models with accuracy, sensitivity and specificity over 83%, 81% and 85% respectively. These results show that OSA events can be accurately predicted in advance based on respiratory signals, opening up opportunities for the development of devices to preemptively regulate the airflow to sleepers to avoid these events. Furthermore, we demonstrate good prediction performance even when respiratory signals are downsampled by a factor of 32, to 1 Hz, for which our proposed 1D-CNN-LSTM achieved 82.94% accuracy, 81.25% sensitivity and 84.63% specificity. This robustness to low sampling frequencies allows our algorithms to be implemented in devices with low storage capacity, making them suitable for at-home environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bio应助科研通管家采纳,获得30
刚刚
细腻海蓝发布了新的文献求助10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
yxx应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
张二狗完成签到,获得积分10
刚刚
zhugao完成签到,获得积分10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
1111应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
Goodenough发布了新的文献求助10
刚刚
cruise应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
沉静小萱完成签到 ,获得积分10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
无奈行恶应助科研通管家采纳,获得20
1秒前
pluto应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
汉堡包应助静夜谧思采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
闪闪映易完成签到,获得积分10
1秒前
1秒前
好运来完成签到,获得积分10
1秒前
麦香鱼完成签到,获得积分10
2秒前
hu完成签到,获得积分10
3秒前
mmx发布了新的文献求助10
3秒前
shenzz发布了新的文献求助10
3秒前
王珏珏完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582