亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sleep Apnea Prediction Using Deep Learning

人工智能 深度学习 计算机科学 稳健性(进化) 睡眠(系统调用) 睡眠呼吸暂停 卷积神经网络 阻塞性睡眠呼吸暂停 呼吸 呼吸暂停 灵敏度(控制系统) 机器学习 呼吸不足 模式识别(心理学) 多导睡眠图 医学 内科学 麻醉 操作系统 工程类 基因 生物化学 化学 电子工程
作者
Eileen Wang,Irena Koprinska,Bryn Jeffries
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5644-5654 被引量:10
标识
DOI:10.1109/jbhi.2023.3305980
摘要

Obstructive sleep apnea (OSA) is a sleep disorder that causes partial or complete cessation of breathing during an individual's sleep. Various methods have been proposed to automatically detect OSA events, but little work has focused on predicting such events in advance, which is useful for the development of devices that regulate breathing during a patient's sleep. We propose four methods for sleep apnea prediction based on convolutional and long short-term memory neural networks (1D-CNN, ConvLSTM, 1D-CNN-LSTM and 2D-CNN-LSTM), which use raw data from three respiratory signals (nasal flow, abdominal and thoracic) sampled at 32 Hz, without any human-engineered features. We predict OSA (apnea or hypopnea) and normal breathing events 30 seconds ahead using the prior 90 seconds' data. Our results on a dataset containing over 46,000 examples from 1,507 subjects show that all four models achieved promising accuracy ( 81%). The 1D-CNN-LSTM and 2D-CNN-LSTM were the best two performing models with accuracy, sensitivity and specificity over 83%, 81% and 85% respectively. These results show that OSA events can be accurately predicted in advance based on respiratory signals, opening up opportunities for the development of devices to preemptively regulate the airflow to sleepers to avoid these events. Furthermore, we demonstrate good prediction performance even when respiratory signals are downsampled by a factor of 32, to 1 Hz, for which our proposed 1D-CNN-LSTM achieved 82.94% accuracy, 81.25% sensitivity and 84.63% specificity. This robustness to low sampling frequencies allows our algorithms to be implemented in devices with low storage capacity, making them suitable for at-home environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
卡曼菊发布了新的文献求助10
7秒前
9秒前
9秒前
11秒前
ZZZ完成签到 ,获得积分10
14秒前
15秒前
35秒前
卡曼菊完成签到,获得积分20
44秒前
rl完成签到,获得积分10
44秒前
忧郁小刺猬完成签到,获得积分10
51秒前
andong应助科研废物在求助采纳,获得10
1分钟前
希望天下0贩的0应助qidada采纳,获得10
1分钟前
1分钟前
qidada发布了新的文献求助10
1分钟前
1分钟前
网易乐完成签到,获得积分10
1分钟前
qidada完成签到,获得积分10
1分钟前
1分钟前
唐唐完成签到 ,获得积分10
1分钟前
hulala发布了新的文献求助200
1分钟前
2分钟前
飞鱼z完成签到 ,获得积分10
2分钟前
yannnis完成签到 ,获得积分10
2分钟前
2分钟前
网易乐发布了新的文献求助20
2分钟前
欢呼毛豆完成签到,获得积分10
2分钟前
2分钟前
wx发布了新的文献求助10
2分钟前
酷波er应助满意若烟采纳,获得10
2分钟前
cai关闭了cai文献求助
2分钟前
3分钟前
清爽冬莲完成签到 ,获得积分10
3分钟前
ding应助带鱼的笔芯采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733367
求助须知:如何正确求助?哪些是违规求助? 3277588
关于积分的说明 10003362
捐赠科研通 2993529
什么是DOI,文献DOI怎么找? 1642752
邀请新用户注册赠送积分活动 780596
科研通“疑难数据库(出版商)”最低求助积分说明 748912