Sleep Apnea Prediction Using Deep Learning

人工智能 深度学习 计算机科学 稳健性(进化) 睡眠(系统调用) 睡眠呼吸暂停 卷积神经网络 阻塞性睡眠呼吸暂停 呼吸 呼吸暂停 灵敏度(控制系统) 机器学习 呼吸不足 模式识别(心理学) 多导睡眠图 医学 内科学 麻醉 操作系统 工程类 基因 生物化学 化学 电子工程
作者
Ergang Wang,Irena Koprinska,Bryn Jeffries
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5644-5654 被引量:2
标识
DOI:10.1109/jbhi.2023.3305980
摘要

Obstructive sleep apnea (OSA) is a sleep disorder that causes partial or complete cessation of breathing during an individual's sleep. Various methods have been proposed to automatically detect OSA events, but little work has focused on predicting such events in advance, which is useful for the development of devices that regulate breathing during a patient's sleep. We propose four methods for sleep apnea prediction based on convolutional and long short-term memory neural networks (1D-CNN, ConvLSTM, 1D-CNN-LSTM and 2D-CNN-LSTM), which use raw data from three respiratory signals (nasal flow, abdominal and thoracic) sampled at 32 Hz, without any human-engineered features. We predict OSA (apnea or hypopnea) and normal breathing events 30 seconds ahead using the prior 90 seconds' data. Our results on a dataset containing over 46,000 examples from 1,507 subjects show that all four models achieved promising accuracy ( 81%). The 1D-CNN-LSTM and 2D-CNN-LSTM were the best two performing models with accuracy, sensitivity and specificity over 83%, 81% and 85% respectively. These results show that OSA events can be accurately predicted in advance based on respiratory signals, opening up opportunities for the development of devices to preemptively regulate the airflow to sleepers to avoid these events. Furthermore, we demonstrate good prediction performance even when respiratory signals are downsampled by a factor of 32, to 1 Hz, for which our proposed 1D-CNN-LSTM achieved 82.94% accuracy, 81.25% sensitivity and 84.63% specificity. This robustness to low sampling frequencies allows our algorithms to be implemented in devices with low storage capacity, making them suitable for at-home environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝麻福福完成签到,获得积分10
1秒前
NexusExplorer应助乐乐采纳,获得10
2秒前
健忘的柠檬完成签到 ,获得积分10
3秒前
Yjj完成签到,获得积分10
4秒前
hux完成签到,获得积分10
4秒前
ChemistryZyh完成签到,获得积分10
4秒前
6秒前
qunli完成签到,获得积分10
7秒前
SYC完成签到,获得积分10
7秒前
having完成签到,获得积分10
7秒前
太阳完成签到 ,获得积分10
7秒前
穆亦擎完成签到 ,获得积分10
8秒前
fujun完成签到,获得积分10
8秒前
WAM完成签到,获得积分20
8秒前
林加号完成签到,获得积分10
8秒前
Dfish完成签到,获得积分10
8秒前
思源应助阿尔法贝塔采纳,获得10
9秒前
Hh完成签到,获得积分10
10秒前
11秒前
老北京发布了新的文献求助10
11秒前
phylicia完成签到 ,获得积分10
12秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
13秒前
obaica完成签到,获得积分10
14秒前
14秒前
feilei完成签到,获得积分10
14秒前
mss12138完成签到,获得积分10
14秒前
Lieme_7完成签到,获得积分10
14秒前
见贤思齐完成签到,获得积分10
14秒前
Xiaoxiannv完成签到,获得积分10
15秒前
那不行得加钱完成签到,获得积分10
15秒前
15秒前
嚣张的小张完成签到,获得积分10
16秒前
16秒前
现代宝宝完成签到,获得积分10
16秒前
干净的夏天完成签到,获得积分10
16秒前
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
JamesPei应助balabala采纳,获得10
17秒前
yao chen完成签到,获得积分10
17秒前
王旭智完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443