亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KD-PAR: A knowledge distillation-based pedestrian attribute recognition model with multi-label mixed feature learning network

计算机科学 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 机器学习 数据挖掘 语言学 生物化学 基因 哲学 化学
作者
Peishu Wu,Zidong Wang,Han Li,Nianyin Zeng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121305-121305 被引量:40
标识
DOI:10.1016/j.eswa.2023.121305
摘要

In this paper, a novel knowledge distillation (KD)-based pedestrian attribute recognition (PAR) model is developed, where a multi-label mixed feature learning network (MMFL-Net) is designed and adopted as the student model. In particular, by applying the grouped depth-wise separable convolution, re-parameterization and coordinate attention mechanism, not only the multi-scale receptive field information is sufficiently fused and spatially dependent robust features are extracted, the model complexity is also effectively kept acceptable. To alleviate the imbalance of category samples, an attribute weight parameter is proposed and considered when calculating the multi-label loss. Moreover, the Jensen–Shannon (JS) divergence-based KD scheme can facilitate the learning of MMFL-Net from the teacher model, which benefits strong fitting ability of the deep feature correlations so as to realize a highly generalized model. The proposed KD-PAR is comprehensively evaluated through many of experiments, and experimental results show the effectiveness and superiority of the proposed model as compared with other advanced MLL-based methods and state-of-the-art PAR models, which efficiently achieves the balance between accuracy and complexity. When facing the complex scenes such as blurry background, similar object interference, and target occlusion, the proposed KD-PAR can even present satisfactory recognition results with strong robustness, thereby providing a feasible and practical solution to the PAR tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
19秒前
852应助AliEmbark采纳,获得30
26秒前
49秒前
51秒前
1分钟前
AliEmbark发布了新的文献求助10
1分钟前
1分钟前
1分钟前
JrPaleo101完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
kale123应助Li采纳,获得10
2分钟前
gtgyh完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
精明的靖雁完成签到,获得积分10
3分钟前
3分钟前
FXe完成签到,获得积分10
3分钟前
Li发布了新的文献求助10
3分钟前
AliEmbark发布了新的文献求助100
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
11完成签到,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
11发布了新的文献求助10
3分钟前
AliEmbark发布了新的文献求助10
3分钟前
4分钟前
4分钟前
Li发布了新的文献求助10
4分钟前
Axs完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549282
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634894
捐赠科研通 4576053
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456515