KD-PAR: A knowledge distillation-based pedestrian attribute recognition model with multi-label mixed feature learning network

计算机科学 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 机器学习 数据挖掘 生物化学 化学 语言学 哲学 基因
作者
Peishu Wu,Zidong Wang,Han Li,Nianyin Zeng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121305-121305 被引量:35
标识
DOI:10.1016/j.eswa.2023.121305
摘要

In this paper, a novel knowledge distillation (KD)-based pedestrian attribute recognition (PAR) model is developed, where a multi-label mixed feature learning network (MMFL-Net) is designed and adopted as the student model. In particular, by applying the grouped depth-wise separable convolution, re-parameterization and coordinate attention mechanism, not only the multi-scale receptive field information is sufficiently fused and spatially dependent robust features are extracted, the model complexity is also effectively kept acceptable. To alleviate the imbalance of category samples, an attribute weight parameter is proposed and considered when calculating the multi-label loss. Moreover, the Jensen–Shannon (JS) divergence-based KD scheme can facilitate the learning of MMFL-Net from the teacher model, which benefits strong fitting ability of the deep feature correlations so as to realize a highly generalized model. The proposed KD-PAR is comprehensively evaluated through many of experiments, and experimental results show the effectiveness and superiority of the proposed model as compared with other advanced MLL-based methods and state-of-the-art PAR models, which efficiently achieves the balance between accuracy and complexity. When facing the complex scenes such as blurry background, similar object interference, and target occlusion, the proposed KD-PAR can even present satisfactory recognition results with strong robustness, thereby providing a feasible and practical solution to the PAR tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkk完成签到,获得积分10
刚刚
楚江南完成签到,获得积分10
1秒前
白樱恋曲完成签到 ,获得积分10
1秒前
默默向雪完成签到,获得积分0
1秒前
1秒前
星辰大海应助西北射天狼采纳,获得10
2秒前
小雨o0发布了新的文献求助10
2秒前
2秒前
LFY完成签到,获得积分10
2秒前
踏实凡阳发布了新的文献求助10
3秒前
tong童完成签到 ,获得积分10
4秒前
汉堡包应助科研小白采纳,获得10
5秒前
nolan完成签到,获得积分10
5秒前
格子发布了新的文献求助10
6秒前
完美世界应助小汪采纳,获得10
6秒前
yin完成签到,获得积分20
6秒前
小雨o0完成签到,获得积分20
6秒前
桐桐应助金枪鱼子采纳,获得10
7秒前
3Hboy完成签到,获得积分10
7秒前
SKSKSK发布了新的文献求助10
8秒前
Mr.Su完成签到 ,获得积分10
9秒前
wu完成签到,获得积分10
9秒前
逗逗完成签到,获得积分10
9秒前
邱寒烟aa完成签到 ,获得积分0
10秒前
李健应助林早早采纳,获得10
11秒前
鲨鱼游泳教练完成签到,获得积分10
12秒前
12秒前
12秒前
小奋青完成签到 ,获得积分10
13秒前
13秒前
無期完成签到 ,获得积分10
14秒前
QWE完成签到,获得积分10
14秒前
科目三应助安白采纳,获得10
14秒前
Ryannnn完成签到,获得积分10
15秒前
逍遥完成签到,获得积分10
15秒前
幸福糖豆完成签到,获得积分10
15秒前
过河卒子完成签到,获得积分10
15秒前
自然秋双完成签到 ,获得积分10
15秒前
CipherSage应助爱笑以松采纳,获得10
16秒前
啧啧啧完成签到,获得积分10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733673
求助须知:如何正确求助?哪些是违规求助? 3277928
关于积分的说明 10005704
捐赠科研通 2994029
什么是DOI,文献DOI怎么找? 1642893
邀请新用户注册赠送积分活动 780690
科研通“疑难数据库(出版商)”最低求助积分说明 748968