KD-PAR: A knowledge distillation-based pedestrian attribute recognition model with multi-label mixed feature learning network

计算机科学 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 机器学习 数据挖掘 语言学 生物化学 基因 哲学 化学
作者
Peishu Wu,Zidong Wang,Han Li,Nianyin Zeng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121305-121305 被引量:35
标识
DOI:10.1016/j.eswa.2023.121305
摘要

In this paper, a novel knowledge distillation (KD)-based pedestrian attribute recognition (PAR) model is developed, where a multi-label mixed feature learning network (MMFL-Net) is designed and adopted as the student model. In particular, by applying the grouped depth-wise separable convolution, re-parameterization and coordinate attention mechanism, not only the multi-scale receptive field information is sufficiently fused and spatially dependent robust features are extracted, the model complexity is also effectively kept acceptable. To alleviate the imbalance of category samples, an attribute weight parameter is proposed and considered when calculating the multi-label loss. Moreover, the Jensen–Shannon (JS) divergence-based KD scheme can facilitate the learning of MMFL-Net from the teacher model, which benefits strong fitting ability of the deep feature correlations so as to realize a highly generalized model. The proposed KD-PAR is comprehensively evaluated through many of experiments, and experimental results show the effectiveness and superiority of the proposed model as compared with other advanced MLL-based methods and state-of-the-art PAR models, which efficiently achieves the balance between accuracy and complexity. When facing the complex scenes such as blurry background, similar object interference, and target occlusion, the proposed KD-PAR can even present satisfactory recognition results with strong robustness, thereby providing a feasible and practical solution to the PAR tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的物语完成签到,获得积分10
刚刚
追寻的安彤完成签到,获得积分20
刚刚
白河发布了新的文献求助10
1秒前
orixero应助苏满天采纳,获得10
2秒前
2秒前
2秒前
JamesPei应助结实的凝天采纳,获得30
2秒前
3秒前
abe发布了新的文献求助10
5秒前
ZQP发布了新的文献求助10
7秒前
杨金城发布了新的文献求助10
7秒前
7秒前
慕课魔芋发布了新的文献求助10
7秒前
Orange应助Yimi采纳,获得10
8秒前
Fen关闭了Fen文献求助
11秒前
MAO完成签到,获得积分10
13秒前
苏满天发布了新的文献求助10
13秒前
科研通AI2S应助吕lvlvlvlvlv采纳,获得10
15秒前
维生素完成签到 ,获得积分10
15秒前
15秒前
雨阳完成签到,获得积分10
17秒前
17秒前
张张发布了新的文献求助10
19秒前
姚子敏完成签到,获得积分10
20秒前
搜集达人应助弥淮采纳,获得10
20秒前
苏满天完成签到,获得积分10
21秒前
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
林大壮发布了新的文献求助10
22秒前
Singularity应助科研通管家采纳,获得20
22秒前
Owen应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
ily.应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
ily.应助科研通管家采纳,获得10
22秒前
科研通AI2S应助12544593556采纳,获得10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112