VisionFM: a Multi-Modal Multi-Task Vision Foundation Model for Generalist Ophthalmic Artificial Intelligence

人工智能 计算机科学 机器学习 水准点(测量) 医学影像学 概化理论 深度学习 心理学 发展心理学 大地测量学 地理
作者
Jianing Qiu,Jian Wu,Hao Wei,Peilun Shi,Minqing Zhang,Yunyun Sun,Lin Li,Hanruo Liu,Hongyi Liu,Simeng Hou,Yuyang Zhao,Xue‐Hui Shi,Junfang Xian,Xiaoxia Qu,Sirui Zhu,Lijie Pan,Xiaoniao Chen,X.‐J. Zhang,Shuai Jiang,Kebing Wang,Chenlong Yang,Mingqiang Chen,Sujie Fan,Jianhua Hu,Aiguo Lv,Hui Miao,Guo Li,Shujun Zhang,Cheng Pei,Xiaojuan Fan,Jianqin Lei,Ting Wei,Junguo Duan,Chun Liu,Xiaobo Xia,Siqi Xiong,Junhong Li,Benny Lo,Yih‐Chung Tham,Tien Yin Wong,Ningli Wang,Wu Yuan
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2310.04992
摘要

We present VisionFM, a foundation model pre-trained with 3.4 million ophthalmic images from 560,457 individuals, covering a broad range of ophthalmic diseases, modalities, imaging devices, and demography. After pre-training, VisionFM provides a foundation to foster multiple ophthalmic artificial intelligence (AI) applications, such as disease screening and diagnosis, disease prognosis, subclassification of disease phenotype, and systemic biomarker and disease prediction, with each application enhanced with expert-level intelligence and accuracy. The generalist intelligence of VisionFM outperformed ophthalmologists with basic and intermediate levels in jointly diagnosing 12 common ophthalmic diseases. Evaluated on a new large-scale ophthalmic disease diagnosis benchmark database, as well as a new large-scale segmentation and detection benchmark database, VisionFM outperformed strong baseline deep neural networks. The ophthalmic image representations learned by VisionFM exhibited noteworthy explainability, and demonstrated strong generalizability to new ophthalmic modalities, disease spectrum, and imaging devices. As a foundation model, VisionFM has a large capacity to learn from diverse ophthalmic imaging data and disparate datasets. To be commensurate with this capacity, in addition to the real data used for pre-training, we also generated and leveraged synthetic ophthalmic imaging data. Experimental results revealed that synthetic data that passed visual Turing tests, can also enhance the representation learning capability of VisionFM, leading to substantial performance gains on downstream ophthalmic AI tasks. Beyond the ophthalmic AI applications developed, validated, and demonstrated in this work, substantial further applications can be achieved in an efficient and cost-effective manner using VisionFM as the foundation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
卓梨发布了新的文献求助10
2秒前
小汤发布了新的文献求助10
3秒前
5秒前
yin应助薛变霞采纳,获得10
5秒前
wang完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
9秒前
瞿选葵发布了新的文献求助10
11秒前
12秒前
小杨完成签到,获得积分10
12秒前
13秒前
14秒前
爆米花发布了新的文献求助10
14秒前
llxgjx完成签到,获得积分10
15秒前
17秒前
Akim应助吃葡萄不吐葡萄皮采纳,获得30
17秒前
18秒前
20秒前
20秒前
充电宝应助执念采纳,获得10
20秒前
chengmin完成签到 ,获得积分10
21秒前
小蘑菇应助代小葵采纳,获得10
21秒前
ASD123发布了新的文献求助10
22秒前
小孙发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
搞怪哑铃发布了新的文献求助10
24秒前
25秒前
轻吟发布了新的文献求助30
27秒前
毕十三发布了新的文献求助30
27秒前
小二郎应助搞怪哑铃采纳,获得10
32秒前
左右逢我完成签到 ,获得积分10
35秒前
36秒前
星辰大海应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得30
38秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693