VisionFM: a Multi-Modal Multi-Task Vision Foundation Model for Generalist Ophthalmic Artificial Intelligence

人工智能 计算机科学 机器学习 水准点(测量) 医学影像学 概化理论 深度学习 心理学 发展心理学 大地测量学 地理
作者
Jianing Qiu,Jian Wu,Hao Wei,Peilun Shi,Minqing Zhang,Yunyun Sun,Lin Li,Hanruo Liu,Hongyi Liu,Simeng Hou,Yuyang Zhao,Xue‐Hui Shi,Junfang Xian,Xiaoxia Qu,Sirui Zhu,Lijie Pan,Xiaoniao Chen,Xiaojia Zhang,Shuai Jiang,Kebing Wang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2310.04992
摘要

We present VisionFM, a foundation model pre-trained with 3.4 million ophthalmic images from 560,457 individuals, covering a broad range of ophthalmic diseases, modalities, imaging devices, and demography. After pre-training, VisionFM provides a foundation to foster multiple ophthalmic artificial intelligence (AI) applications, such as disease screening and diagnosis, disease prognosis, subclassification of disease phenotype, and systemic biomarker and disease prediction, with each application enhanced with expert-level intelligence and accuracy. The generalist intelligence of VisionFM outperformed ophthalmologists with basic and intermediate levels in jointly diagnosing 12 common ophthalmic diseases. Evaluated on a new large-scale ophthalmic disease diagnosis benchmark database, as well as a new large-scale segmentation and detection benchmark database, VisionFM outperformed strong baseline deep neural networks. The ophthalmic image representations learned by VisionFM exhibited noteworthy explainability, and demonstrated strong generalizability to new ophthalmic modalities, disease spectrum, and imaging devices. As a foundation model, VisionFM has a large capacity to learn from diverse ophthalmic imaging data and disparate datasets. To be commensurate with this capacity, in addition to the real data used for pre-training, we also generated and leveraged synthetic ophthalmic imaging data. Experimental results revealed that synthetic data that passed visual Turing tests, can also enhance the representation learning capability of VisionFM, leading to substantial performance gains on downstream ophthalmic AI tasks. Beyond the ophthalmic AI applications developed, validated, and demonstrated in this work, substantial further applications can be achieved in an efficient and cost-effective manner using VisionFM as the foundation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fann完成签到 ,获得积分10
3秒前
科研通AI5应助杨一采纳,获得10
5秒前
6秒前
土书完成签到,获得积分10
7秒前
9秒前
充电宝应助Iris采纳,获得10
10秒前
Kz发布了新的文献求助10
10秒前
wy.he应助芜厸采纳,获得10
12秒前
wy.he应助芜厸采纳,获得10
13秒前
wy.he应助芜厸采纳,获得10
13秒前
HEIKU应助猪猪hero采纳,获得10
15秒前
科研助手6应助猪猪hero采纳,获得10
15秒前
班小班完成签到,获得积分10
16秒前
16秒前
Qyyy完成签到,获得积分10
18秒前
Ava应助Kz采纳,获得30
18秒前
听闻墨笙完成签到 ,获得积分10
20秒前
boomzycz发布了新的文献求助10
22秒前
渝州人完成签到,获得积分10
25秒前
华仔应助sln采纳,获得10
34秒前
42秒前
17完成签到,获得积分10
43秒前
zcc完成签到,获得积分10
44秒前
46秒前
wjy发布了新的文献求助10
48秒前
杨一发布了新的文献求助10
50秒前
sln发布了新的文献求助10
51秒前
1分钟前
1分钟前
1分钟前
wjy关注了科研通微信公众号
1分钟前
LOKL完成签到,获得积分10
1分钟前
桐桐应助机灵大炮采纳,获得10
1分钟前
Ying完成签到,获得积分10
1分钟前
青雉发布了新的文献求助10
1分钟前
1分钟前
hao完成签到,获得积分10
1分钟前
LIUJIAWEI发布了新的文献求助10
1分钟前
无花果应助boomzycz采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775810
求助须知:如何正确求助?哪些是违规求助? 3321421
关于积分的说明 10205344
捐赠科研通 3036413
什么是DOI,文献DOI怎么找? 1666113
邀请新用户注册赠送积分活动 797294
科研通“疑难数据库(出版商)”最低求助积分说明 757794