多菌灵
分子印迹聚合物
化学
微分脉冲伏安法
适体
循环伏安法
血红素
核化学
电化学
选择性
有机化学
电极
催化作用
杀菌剂
血红素
植物
遗传学
物理化学
生物
酶
作者
Hossein Khosropour,Mansoureh Keramat,Wanida Laiwattanapaisal
标识
DOI:10.1016/j.bios.2023.115754
摘要
Carbendazim is often used in agriculture to prevent crop diseases, even though it has been associated with health concerns. To ensure the safety of food products and comply with environmental regulations, an ultrasensitive method for carbendazim determination must be developed. In this study, a new electrochemical molecularly imprinted polymer-aptasensor based on hemin-Al-metal organic framework@gold nanoparticles (H-Al-MOF@AuNPs) was developed for sensitive and selective carbendazim detection. Hemin linked to the surface of the Al-metal organic framework also possesses outstanding peroxidase-like qualities that can electrocatalyse the reduction of H2O2. Thus, H-Al-MOF functions as an in-situ probe. Additionally, AuNPs offer many binding sites to load carbendazim aptamers and create an imprinted polymer-aptasensing interface. Dopamine is the chemical functional monomer in the electropolymerised film, while carbendazim is the template molecule. Thus, compared to the molecularly imprinted polymer or aptasensor alone, the molecularly imprinted polymer-aptasensor showed greater selectivity due to the synergistic action of the polymer and carbendazim aptamer towards carbendazim. A decrease in peak current was observed by differential pulse voltammetry (DPV) and chronoamperometry (CA) as the concentration of carbendazim increased. This possibly resulted from carbendazim connecting to the carbendazim aptamer and simultaneously blocking the imprinted polymer cavities on the surface of the modified electrode, which reduced the transfer of electrons. Signals were observed for hemin DPV and H2O2 catalytic reduction CA. DPV and CA showed that the linear ranges for carbendazim were 0.3 fmol L-1-10 pmol L-1 and 0.7 fmol L-1-10 pmol L-1, respectively, with limits of detection of 80 and 300 amol L-1. Satisfactory recoveries were obtained with tap water, apple juice, and tomato juice samples, demonstrating that the proposed sensor has potential for food and environmental analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI