推进剂
泄漏(经济)
座舱增压
工程类
液态氢
航空航天工程
推进
氢
电气工程
物理
量子力学
经济
宏观经济学
出处
期刊:STIN
日期:1994-01-01
卷期号:95: 17895-
被引量:2
摘要
Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.
科研通智能强力驱动
Strongly Powered by AbleSci AI