Single-cell manifold-preserving feature selection for detecting rare cell populations

降维 非线性降维 背景(考古学) 特征选择 计算生物学 模式识别(心理学) 人工智能 歧管(流体力学) 生物 聚类分析 选择(遗传算法) 特征(语言学) 计算机科学 古生物学 哲学 工程类 机械工程 语言学
作者
Shaoheng Liang,Vakul Mohanty,Jinzhuang Dou,Qi Miao,Yuefan Huang,Muharrem Müftüoǧlu,Li Ding,Weiyi Peng,Ken Chen
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:1 (5): 374-384 被引量:35
标识
DOI:10.1038/s43588-021-00070-7
摘要

A key challenge in studying organisms and diseases is to detect rare molecular programs and rare cell populations that drive development, differentiation and transformation. Molecular features, such as genes and proteins, defining rare cell populations are often unknown and are difficult to detect from unenriched single-cell data using conventional dimensionality reduction and clustering-based approaches. Here, we propose an unsupervised approach, SCMER (‘single-cell manifold-preserving feature selection’), which selects a compact set of molecular features with definitive meanings that preserve the manifold of the data. We apply SCMER in the context of hematopoiesis, lymphogenesis, tumorigenesis and drug resistance and response. We find that SCMER can identify non-redundant features that sensitively delineate both common cell lineages and rare cellular states. SCMER can be used for discovering molecular features in a high-dimensional dataset, designing targeted, cost-effective assays for clinical applications and facilitating multi-modality integration. A manifold-preserving feature selection method was developed for single-cell data analysis, which selects non-redundant features to help detect rare cell populations, design follow-up studies and create targeted panels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
卡卡西应助铜豌豆采纳,获得10
1秒前
1秒前
2秒前
可爱的以松关注了科研通微信公众号
2秒前
赘婿应助123465采纳,获得10
2秒前
2秒前
传奇3应助Summer采纳,获得10
3秒前
无私的芹应助木头人采纳,获得10
3秒前
4秒前
4秒前
超帅凡阳完成签到,获得积分10
5秒前
善学以致用应助PJ采纳,获得10
5秒前
WD完成签到,获得积分10
5秒前
6秒前
6秒前
ZX发布了新的文献求助10
6秒前
zy发布了新的文献求助10
7秒前
benj发布了新的文献求助30
7秒前
俏皮面包发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
WD发布了新的文献求助10
8秒前
汪鸡毛完成签到 ,获得积分10
9秒前
xingchangrui发布了新的文献求助20
10秒前
某只羊发布了新的文献求助10
11秒前
13秒前
李BO完成签到 ,获得积分10
13秒前
鲜艳的靖雁完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
脑洞疼应助小黑超努力采纳,获得10
16秒前
热心市民小红花应助Just.M采纳,获得10
16秒前
锐哥发布了新的文献求助10
17秒前
H2O完成签到,获得积分10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281