分割
人工智能
计算机科学
图像分割
卷积(计算机科学)
可视化
翻译(生物学)
医学影像学
模式识别(心理学)
计算机视觉
人工神经网络
生物化学
基因
信使核糖核酸
化学
作者
Wankang Zeng,Wenkang Fan,Rong Chen,Zhuohui Zheng,Song Zheng,Jianhui Chen,Rong Liu,Qiang Zeng,Zengqin Liu,Yinran Chen,Xióngbiāo Luó
标识
DOI:10.1109/isbi48211.2021.9434099
摘要
Computed tomography urography imaging is routinely performed to evaluate the kidneys. Kidney 3D segmentation and reconstruction from urographic images provides physicians with an intuitive visualization way to accurately diagnose and treat kidney diseases, particularly used in surgical planning and outcome analysis before and after kidney surgery. While 3D fully convolution networks have achieved a big success in medical image segmentation, they get trapped in clinical unseen data and cannot be adapted in deferent modalities with one training procedure. This study proposes an unsupervised domain adaptation or translation method with 2D networks to deeply learn urographic images for accurate kidney segmentation. We tested our proposed method on clinical urography data. The experimental results demonstrate our proposed method can resolve the domain shift problem of kidney segmentation and achieve the comparable or better results than supervised learning based segmentation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI