Boosting(机器学习)
计算机科学
稳健性(进化)
自动化
聚类分析
机器学习
人工智能
数据挖掘
控制系统
工程类
机械工程
生物化学
化学
电气工程
基因
作者
Raphael Eidenbenz,Carsten Franke,Thanikesavan Sivanthi,Sandro Schoenborn
标识
DOI:10.1109/icst49551.2021.00048
摘要
Testing of large and complex industrial control systems is challenging as the space of possible input and environmental parameters is large. Searching the entire space for potential failures is practically infeasible. This paper introduces an industrial control system robustness testing problem and evaluates artificial intelligence (AI) based strategies to efficiently explore the space and to identify parameter sets that can cause the system to fail. The proposed solution approach uses regression techniques to speed up the search and clustering methods to identify parameter sets that represent distinct system failures.
科研通智能强力驱动
Strongly Powered by AbleSci AI