兴奋剂
钙钛矿(结构)
光致发光
光电探测器
材料科学
量子效率
吸光度
卤化物
光电子学
分析化学(期刊)
结合能
粒度
Crystal(编程语言)
响应度
铯
无机化学
化学
结晶学
原子物理学
物理
冶金
色谱法
程序设计语言
计算机科学
作者
Yuan‐Wen Hsiao,Jyun-You Song,Hsuan‐Ta Wu,Kung-Tung Hong,Ching‐Chich Leu,Chuan‐Feng Shih
标识
DOI:10.1016/j.jallcom.2021.161621
摘要
This research reports on the effects of Cs doping in the Csx(FA0.75MA0.25PbI3)1−x based perovskites and photodetectors (PDs) with various Cs contents from 0% to 7.5%. The incorporation of 2.5–5% Cs markedly improved the crystal quality of perovskite films that in turns increased, the photoluminescence, absorbance, and quantum efficiency. Over-doping Cs upto 7.5% degraded the devices. X-ray photoemission spectroscopy shows that the binding energies of the Cs, Pb and I core levels shifted to high-energy side, indicating the Cs enter the lattice sites and improved the stability of the film. For PD applications, the influence of Cs doping in the perovskite was mostly on the reduction of rise time, causing by increase of the generation rate of carriers and reduction of trap densities of carriers. The 5% Cs-doped sample showed the best performance, because of the optimization of the grain size, crystal quality and trap density. As a result, the self-powered perovskite demonstrated an impressive performance with ~70% external quantum efficiency, 0.36 A W−1 responsivity, 1.15 × 1012 Jones, and rapid rise and decay time of 1.5 μs and 21 μs, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI