Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer

医学 组织学 淋巴结转移 前列腺癌 转移 淋巴结 前列腺 病理 肿瘤科 癌症 内科学
作者
Frederik Wessels,Max Schmitt,Eva Krieghoff‐Henning,Tanja Jutzi,Thomas Stefan Worst,Frank Waldbillig,Manuel Neuberger,Roman C. Maron,Matthias Steeg,Timo Gaiser,Achim Hekler,Jochen Utikal,Christof von Kalle,Stefan Fröhling,Maurice Stephan Michel,Philipp Nuhn,Titus J. Brinker
出处
期刊:BJUI [Wiley]
卷期号:128 (3): 352-360 被引量:50
标识
DOI:10.1111/bju.15386
摘要

To develop a new digital biomarker based on the analysis of primary tumour tissue by a convolutional neural network (CNN) to predict lymph node metastasis (LNM) in a cohort matched for already established risk factors.Haematoxylin and eosin (H&E) stained primary tumour slides from 218 patients (102 N+; 116 N0), matched for Gleason score, tumour size, venous invasion, perineural invasion and age, who underwent radical prostatectomy were selected to train a CNN and evaluate its ability to predict LN status.With 10 models trained with the same data, a mean area under the receiver operating characteristic curve (AUROC) of 0.68 (95% confidence interval [CI] 0.678-0.682) and a mean balanced accuracy of 61.37% (95% CI 60.05-62.69%) was achieved. The mean sensitivity and specificity was 53.09% (95% CI 49.77-56.41%) and 69.65% (95% CI 68.21-71.1%), respectively. These results were confirmed via cross-validation. The probability score for LNM prediction was significantly higher on image sections from N+ samples (mean [SD] N+ probability score 0.58 [0.17] vs 0.47 [0.15] N0 probability score, P = 0.002). In multivariable analysis, the probability score of the CNN (odds ratio [OR] 1.04 per percentage probability, 95% CI 1.02-1.08; P = 0.04) and lymphovascular invasion (OR 11.73, 95% CI 3.96-35.7; P < 0.001) proved to be independent predictors for LNM.In our present study, CNN-based image analyses showed promising results as a potential novel low-cost method to extract relevant prognostic information directly from H&E histology to predict the LN status of patients with prostate cancer. Our ubiquitously available technique might contribute to an improved LN status prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
neckerzhu完成签到 ,获得积分0
刚刚
阳光发布了新的文献求助10
1秒前
完美世界应助LTY采纳,获得10
1秒前
Rick发布了新的文献求助10
1秒前
fafafa完成签到,获得积分10
1秒前
1秒前
酷酷的代芙完成签到 ,获得积分10
1秒前
欧阳沛沛关注了科研通微信公众号
1秒前
rorolinlin发布了新的文献求助10
1秒前
2秒前
w1完成签到,获得积分10
2秒前
pianoboy完成签到,获得积分10
2秒前
卓卓发布了新的文献求助10
2秒前
金雪完成签到,获得积分10
2秒前
honor179发布了新的文献求助10
3秒前
3秒前
王晓雪完成签到,获得积分10
3秒前
cxy发布了新的文献求助10
4秒前
云朵发布了新的文献求助20
4秒前
薇子完成签到,获得积分10
4秒前
4秒前
眰恦发布了新的文献求助10
5秒前
科研通AI6应助牛牛牛采纳,获得10
5秒前
清寒完成签到,获得积分10
5秒前
Ava应助lemon采纳,获得10
5秒前
博修发布了新的文献求助10
6秒前
亚铁氰化钾应助车厘子采纳,获得10
6秒前
huntme完成签到,获得积分10
6秒前
CodeCraft应助AveryZhang采纳,获得10
6秒前
梯度发布了新的文献求助10
7秒前
wuta完成签到,获得积分10
7秒前
teng关注了科研通微信公众号
8秒前
蓝色斑马完成签到,获得积分10
8秒前
秦萍发布了新的文献求助10
8秒前
8秒前
hq完成签到 ,获得积分10
8秒前
8秒前
亚铁氰化钾应助cys采纳,获得20
9秒前
豌豆射手发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571679
求助须知:如何正确求助?哪些是违规求助? 3992705
关于积分的说明 12359471
捐赠科研通 3665804
什么是DOI,文献DOI怎么找? 2020265
邀请新用户注册赠送积分活动 1054541
科研通“疑难数据库(出版商)”最低求助积分说明 942100