医学
置信区间
旁侵犯
前列腺癌
接收机工作特性
淋巴血管侵犯
前列腺切除术
转移
淋巴结
优势比
肿瘤科
癌症
放射科
内科学
泌尿科
列线图
作者
Frederik Wessels,Max Schmitt,Eva Krieghoff-Henning,Tanja Jutzi,Thomas Worst,Frank Waldbillig,Manuel Neuberger,Roman C. Maron,Matthias Steeg,Timo Gaiser,Achim Hekler,Jochen Utikal,Christof von Kalle,Stefan Fröhling,Maurice Stephan Michel,Philipp Nuhn,Titus J. Brinker
出处
期刊:BJUI
[Wiley]
日期:2021-05-05
卷期号:128 (3): 352-360
被引量:37
摘要
To develop a new digital biomarker based on the analysis of primary tumour tissue by a convolutional neural network (CNN) to predict lymph node metastasis (LNM) in a cohort matched for already established risk factors.Haematoxylin and eosin (H&E) stained primary tumour slides from 218 patients (102 N+; 116 N0), matched for Gleason score, tumour size, venous invasion, perineural invasion and age, who underwent radical prostatectomy were selected to train a CNN and evaluate its ability to predict LN status.With 10 models trained with the same data, a mean area under the receiver operating characteristic curve (AUROC) of 0.68 (95% confidence interval [CI] 0.678-0.682) and a mean balanced accuracy of 61.37% (95% CI 60.05-62.69%) was achieved. The mean sensitivity and specificity was 53.09% (95% CI 49.77-56.41%) and 69.65% (95% CI 68.21-71.1%), respectively. These results were confirmed via cross-validation. The probability score for LNM prediction was significantly higher on image sections from N+ samples (mean [SD] N+ probability score 0.58 [0.17] vs 0.47 [0.15] N0 probability score, P = 0.002). In multivariable analysis, the probability score of the CNN (odds ratio [OR] 1.04 per percentage probability, 95% CI 1.02-1.08; P = 0.04) and lymphovascular invasion (OR 11.73, 95% CI 3.96-35.7; P < 0.001) proved to be independent predictors for LNM.In our present study, CNN-based image analyses showed promising results as a potential novel low-cost method to extract relevant prognostic information directly from H&E histology to predict the LN status of patients with prostate cancer. Our ubiquitously available technique might contribute to an improved LN status prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI