Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer

医学 组织学 淋巴结转移 前列腺癌 转移 淋巴结 前列腺 病理 肿瘤科 癌症 内科学
作者
Frederik Wessels,Max Schmitt,Eva Krieghoff‐Henning,Tanja Jutzi,Thomas Stefan Worst,Frank Waldbillig,Manuel Neuberger,Roman C. Maron,Matthias Steeg,Timo Gaiser,Achim Hekler,Jochen Utikal,Christof von Kalle,Stefan Fröhling,Maurice Stephan Michel,Philipp Nuhn,Titus J. Brinker
出处
期刊:BJUI [Wiley]
卷期号:128 (3): 352-360 被引量:50
标识
DOI:10.1111/bju.15386
摘要

To develop a new digital biomarker based on the analysis of primary tumour tissue by a convolutional neural network (CNN) to predict lymph node metastasis (LNM) in a cohort matched for already established risk factors.Haematoxylin and eosin (H&E) stained primary tumour slides from 218 patients (102 N+; 116 N0), matched for Gleason score, tumour size, venous invasion, perineural invasion and age, who underwent radical prostatectomy were selected to train a CNN and evaluate its ability to predict LN status.With 10 models trained with the same data, a mean area under the receiver operating characteristic curve (AUROC) of 0.68 (95% confidence interval [CI] 0.678-0.682) and a mean balanced accuracy of 61.37% (95% CI 60.05-62.69%) was achieved. The mean sensitivity and specificity was 53.09% (95% CI 49.77-56.41%) and 69.65% (95% CI 68.21-71.1%), respectively. These results were confirmed via cross-validation. The probability score for LNM prediction was significantly higher on image sections from N+ samples (mean [SD] N+ probability score 0.58 [0.17] vs 0.47 [0.15] N0 probability score, P = 0.002). In multivariable analysis, the probability score of the CNN (odds ratio [OR] 1.04 per percentage probability, 95% CI 1.02-1.08; P = 0.04) and lymphovascular invasion (OR 11.73, 95% CI 3.96-35.7; P < 0.001) proved to be independent predictors for LNM.In our present study, CNN-based image analyses showed promising results as a potential novel low-cost method to extract relevant prognostic information directly from H&E histology to predict the LN status of patients with prostate cancer. Our ubiquitously available technique might contribute to an improved LN status prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
娃娃菜妮发布了新的文献求助10
1秒前
orange发布了新的文献求助10
1秒前
2秒前
去玩儿发布了新的文献求助10
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
滕可燕完成签到,获得积分10
2秒前
3秒前
小蘑菇应助刚国忠采纳,获得10
3秒前
mylove应助Sid采纳,获得10
4秒前
承乐发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
王宽宽宽完成签到,获得积分10
6秒前
6秒前
科研通AI6应助13nnk采纳,获得10
7秒前
程昌盛完成签到,获得积分10
7秒前
Aprilapple发布了新的文献求助10
7秒前
8秒前
华仔应助一十六采纳,获得10
8秒前
8秒前
完美世界应助王彦林采纳,获得10
8秒前
去玩儿完成签到,获得积分20
9秒前
9秒前
王宽宽宽发布了新的文献求助10
9秒前
lwq发布了新的文献求助10
9秒前
Grace完成签到,获得积分10
10秒前
华仔应助YaHaa采纳,获得10
11秒前
滕可燕发布了新的文献求助10
11秒前
爆米花应助陈甜甜采纳,获得10
12秒前
摆烂小鱼鱼完成签到 ,获得积分10
12秒前
Lucas应助韩麒嘉采纳,获得10
12秒前
12秒前
12秒前
13秒前
Niuniu完成签到,获得积分10
13秒前
裴裴驳回了珏晴应助
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836