Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer

医学 组织学 淋巴结转移 前列腺癌 转移 淋巴结 前列腺 病理 肿瘤科 癌症 内科学
作者
Frederik Wessels,Max Schmitt,Eva Krieghoff‐Henning,Tanja Jutzi,Thomas Stefan Worst,Frank Waldbillig,Manuel Neuberger,Roman C. Maron,Matthias Steeg,Timo Gaiser,Achim Hekler,Jochen Utikal,Christof von Kalle,Stefan Fröhling,Maurice Stephan Michel,Philipp Nuhn,Titus J. Brinker
出处
期刊:BJUI [Wiley]
卷期号:128 (3): 352-360 被引量:49
标识
DOI:10.1111/bju.15386
摘要

To develop a new digital biomarker based on the analysis of primary tumour tissue by a convolutional neural network (CNN) to predict lymph node metastasis (LNM) in a cohort matched for already established risk factors.Haematoxylin and eosin (H&E) stained primary tumour slides from 218 patients (102 N+; 116 N0), matched for Gleason score, tumour size, venous invasion, perineural invasion and age, who underwent radical prostatectomy were selected to train a CNN and evaluate its ability to predict LN status.With 10 models trained with the same data, a mean area under the receiver operating characteristic curve (AUROC) of 0.68 (95% confidence interval [CI] 0.678-0.682) and a mean balanced accuracy of 61.37% (95% CI 60.05-62.69%) was achieved. The mean sensitivity and specificity was 53.09% (95% CI 49.77-56.41%) and 69.65% (95% CI 68.21-71.1%), respectively. These results were confirmed via cross-validation. The probability score for LNM prediction was significantly higher on image sections from N+ samples (mean [SD] N+ probability score 0.58 [0.17] vs 0.47 [0.15] N0 probability score, P = 0.002). In multivariable analysis, the probability score of the CNN (odds ratio [OR] 1.04 per percentage probability, 95% CI 1.02-1.08; P = 0.04) and lymphovascular invasion (OR 11.73, 95% CI 3.96-35.7; P < 0.001) proved to be independent predictors for LNM.In our present study, CNN-based image analyses showed promising results as a potential novel low-cost method to extract relevant prognostic information directly from H&E histology to predict the LN status of patients with prostate cancer. Our ubiquitously available technique might contribute to an improved LN status prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张先森完成签到,获得积分10
1秒前
Orange应助饭小心采纳,获得10
1秒前
jason完成签到,获得积分10
1秒前
1秒前
1秒前
糖糖完成签到,获得积分10
2秒前
小二郎应助幸福胡萝卜采纳,获得10
2秒前
2秒前
亵渎完成签到,获得积分10
2秒前
mc1220完成签到,获得积分10
3秒前
3秒前
冰刀完成签到,获得积分10
4秒前
kid1412完成签到 ,获得积分10
5秒前
LU完成签到,获得积分10
5秒前
小蘑菇应助R先生采纳,获得50
5秒前
5秒前
小嘎完成签到 ,获得积分10
6秒前
6秒前
6秒前
小虎发布了新的文献求助30
6秒前
7秒前
superworm1完成签到,获得积分10
7秒前
不懂事的小孩完成签到,获得积分10
7秒前
张瑶完成签到,获得积分10
7秒前
chloe完成签到 ,获得积分10
7秒前
桐桐应助申小萌采纳,获得10
8秒前
星星泡饭完成签到,获得积分10
8秒前
健忘曼云完成签到,获得积分10
8秒前
晶晶妹妹发布了新的文献求助10
8秒前
8秒前
通~发布了新的文献求助10
9秒前
9秒前
xiaohongmao完成签到,获得积分10
9秒前
科研通AI5应助6680668采纳,获得10
10秒前
10秒前
卡卡发布了新的文献求助10
11秒前
12秒前
欢呼鼠标发布了新的文献求助10
12秒前
appearance发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762