Probabilistic trajectory prediction of heterogeneous traffic agents based on layered spatio-temporal graph

弹道 计算机科学 交叉口(航空) 图形 情态动词 概率逻辑 人工智能 数据挖掘 机器学习 运输工程 理论计算机科学 工程类 天文 物理 化学 高分子化学
作者
Xuexiang Zhang,Weiwei Zhang,Xuncheng Wu,Wenguan Cao
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:235 (9): 2413-2424 被引量:2
标识
DOI:10.1177/0954407021997667
摘要

In order to safely and comfortably navigate in the complex urban traffic, it is necessary to make multi-modal predictions of autonomous vehicles for the next trajectory of various traffic participants, with the continuous movement trend and inertia of the surrounding traffic agents taken into account. At present, most trajectory prediction methods focus on prediction on future behavior of traffic agents but with limited, consideration of the response of traffic agents to the future behavior of the ego-agent. Moreover, it can only predict the trajectory of single-type agents, which make it impossible to learn interaction in a complex environment between traffic agents. In this paper, we proposed a graph-based heterogeneous traffic agents trajectory prediction model LSTGHP, which consists of the following three parts: (1) layered spatio-temporal graph module; (2) ego-agent motion module; (3) trajectory prediction module, which can realize multi-modal prediction of future trajectories of traffic agents with different semantic categories in the scene. To evaluate its performance, we collected trajectory datasets of heterogeneous traffic agents in a time-varying, highly dynamic urban intersection environment, where vehicles, bicycles, and pedestrians interacted with each other in the scene. It can be drawn from experimental results that our model can improve its prediction accuracy while interacting at a close range. Compared with the previous prediction methods, the model has less prediction error in the trajectory prediction of heterogeneous traffic agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
library2025发布了新的文献求助10
1秒前
Akim应助ZXL采纳,获得10
1秒前
1秒前
2秒前
十里桃花不徘徊完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
pink完成签到,获得积分20
4秒前
Jessie发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
ZHIXIANGWENG发布了新的文献求助10
6秒前
折柳完成签到 ,获得积分10
6秒前
6秒前
起风了发布了新的文献求助10
6秒前
yiyiyi完成签到,获得积分20
7秒前
精明松思完成签到,获得积分20
7秒前
踏实志泽发布了新的文献求助10
7秒前
7秒前
氟马西尼发布了新的文献求助10
8秒前
英俊的铭应助gx采纳,获得10
9秒前
10秒前
善良诗珊发布了新的文献求助10
10秒前
nana湘完成签到,获得积分10
10秒前
11秒前
普通用户30号完成签到 ,获得积分10
11秒前
wanci应助青林采纳,获得10
12秒前
折柳关注了科研通微信公众号
12秒前
12秒前
12秒前
小蜜罐完成签到,获得积分10
13秒前
nana湘发布了新的文献求助20
13秒前
13秒前
星辰大海应助Hanayu采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472