Probabilistic trajectory prediction of heterogeneous traffic agents based on layered spatio-temporal graph

弹道 计算机科学 交叉口(航空) 图形 情态动词 概率逻辑 人工智能 数据挖掘 机器学习 运输工程 理论计算机科学 工程类 物理 天文 高分子化学 化学
作者
Xuexiang Zhang,Weiwei Zhang,Xuncheng Wu,Wenguan Cao
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:235 (9): 2413-2424 被引量:2
标识
DOI:10.1177/0954407021997667
摘要

In order to safely and comfortably navigate in the complex urban traffic, it is necessary to make multi-modal predictions of autonomous vehicles for the next trajectory of various traffic participants, with the continuous movement trend and inertia of the surrounding traffic agents taken into account. At present, most trajectory prediction methods focus on prediction on future behavior of traffic agents but with limited, consideration of the response of traffic agents to the future behavior of the ego-agent. Moreover, it can only predict the trajectory of single-type agents, which make it impossible to learn interaction in a complex environment between traffic agents. In this paper, we proposed a graph-based heterogeneous traffic agents trajectory prediction model LSTGHP, which consists of the following three parts: (1) layered spatio-temporal graph module; (2) ego-agent motion module; (3) trajectory prediction module, which can realize multi-modal prediction of future trajectories of traffic agents with different semantic categories in the scene. To evaluate its performance, we collected trajectory datasets of heterogeneous traffic agents in a time-varying, highly dynamic urban intersection environment, where vehicles, bicycles, and pedestrians interacted with each other in the scene. It can be drawn from experimental results that our model can improve its prediction accuracy while interacting at a close range. Compared with the previous prediction methods, the model has less prediction error in the trajectory prediction of heterogeneous traffic agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖和孩子发布了新的文献求助10
2秒前
3秒前
Whisper-CCM完成签到,获得积分10
5秒前
花城完成签到 ,获得积分10
7秒前
炙热的夜雪完成签到 ,获得积分10
7秒前
Skuld发布了新的文献求助10
8秒前
TRz完成签到,获得积分10
8秒前
Liufgui应助娜娜家的大宝贝采纳,获得10
9秒前
领导范儿应助萝卜不困采纳,获得10
11秒前
Liufgui应助molly雨轩采纳,获得10
12秒前
可爱的汤圆完成签到,获得积分10
13秒前
谦让映菡发布了新的文献求助10
15秒前
17秒前
巨大的小侠完成签到,获得积分10
19秒前
orixero应助甜甜圈采纳,获得10
19秒前
娜娜发布了新的文献求助10
22秒前
都不好听发布了新的文献求助30
22秒前
等春树完成签到 ,获得积分10
23秒前
25秒前
Karry完成签到 ,获得积分10
27秒前
菠菜发布了新的文献求助50
27秒前
28秒前
兜兜揣满糖完成签到 ,获得积分10
30秒前
倾听阳光完成签到 ,获得积分10
31秒前
传奇3应助大兵采纳,获得10
31秒前
31秒前
Liufgui应助YEGE采纳,获得10
33秒前
35秒前
Beginner发布了新的文献求助10
35秒前
汉堡包应助verbal2005采纳,获得10
38秒前
万能图书馆应助威武鸽子采纳,获得10
39秒前
CR7应助橙子采纳,获得20
40秒前
水加冰糖发布了新的文献求助10
40秒前
充电宝应助都不好听采纳,获得10
40秒前
酷波er应助舒服的寻琴采纳,获得30
41秒前
细腻的深白完成签到,获得积分10
41秒前
KDS发布了新的文献求助10
41秒前
41秒前
42秒前
Beginner完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075