Image Captioning for Video Surveillance System using Neural Networks

隐藏字幕 计算机科学 卷积神经网络 人工智能 计算机视觉 人工神经网络 图像(数学) 计算机安全 多媒体
作者
M. Nivedita,Priyanka Chandrashekar,Shibani Mahapatra,Y. Asnath Victy Phamila,Sathish Kumar Selvaperumal
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:21 (04) 被引量:2
标识
DOI:10.1142/s0219467821500443
摘要

Security has always been of paramount importance to humans. In the absence of a sense of security at one’s workplace, home or anywhere else, people feel uneasy and vulnerable. With the improvement of modern technology, along with the lack of time at hand, the need for faster, efficient, accurate as well as low-cost security techniques is more than ever. Image Captioning for Video Surveillance System is proposed to develop visual systems that generate contextual descriptions about objects in images, and then use these descriptions to provide information of the scene that needs to be secured. The proposed system uses a neural network model composed of a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to caption the incoming video feed. The main significance of this paper is in integrating the system with Discrete Wavelet Transform (DWT), which is applied on the incoming video feed, so that the compressed LL band frames transferred wirelessly to the model are smaller in comparison, leading to less transfer time and faster processing by the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ccc关注了科研通微信公众号
1秒前
1秒前
1秒前
2秒前
坚果发布了新的文献求助10
3秒前
mjf111完成签到,获得积分10
4秒前
5秒前
guojingjing发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
赵鹏发布了新的文献求助10
7秒前
李爱国应助allzzwell采纳,获得10
7秒前
penpen完成签到,获得积分10
7秒前
517完成签到 ,获得积分10
8秒前
9秒前
9秒前
打工人完成签到,获得积分10
10秒前
10秒前
11秒前
万能图书馆应助Judy采纳,获得10
11秒前
12秒前
12秒前
11111发布了新的文献求助10
13秒前
Franco完成签到,获得积分10
13秒前
Lunjiang发布了新的文献求助10
14秒前
哈吉米发布了新的文献求助10
14秒前
元谷雪发布了新的文献求助10
15秒前
ZXC发布了新的文献求助10
15秒前
高兴的外套完成签到,获得积分10
15秒前
呆一起完成签到,获得积分10
15秒前
zmhstb发布了新的文献求助10
16秒前
FrankJeffison完成签到,获得积分10
16秒前
17秒前
17秒前
M_liya完成签到,获得积分10
17秒前
17秒前
所所应助qiii采纳,获得10
17秒前
砖砖发布了新的文献求助10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233