FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public

计算机科学 卷积神经网络 稳健性(进化) 人工智能 水准点(测量) 推论 特征提取 提取器 2019年冠状病毒病(COVID-19) 模式识别(心理学) 残余物 数据挖掘 算法 传染病(医学专业) 工程类 病理 基因 化学 医学 地理 生物化学 工艺工程 疾病 大地测量学
作者
Peishu Wu,Han Li,Nianyin Zeng,Fengping Li
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:117: 104341-104341 被引量:28
标识
DOI:10.1016/j.imavis.2021.104341
摘要

Coronavirus disease 2019 (COVID-19) is a world-wide epidemic and efficient prevention and control of this disease has become the focus of global scientific communities. In this paper, a novel face mask detection framework FMD-Yolo is proposed to monitor whether people wear masks in a right way in public, which is an effective way to block the virus transmission. In particular, the feature extractor employs Im-Res2Net-101 which combines Res2Net module and deep residual network, where utilization of hierarchical convolutional structure, deformable convolution and non-local mechanisms enables thorough information extraction from the input. Afterwards, an enhanced path aggregation network En-PAN is applied for feature fusion, where high-level semantic information and low-level details are sufficiently merged so that the model robustness and generalization ability can be enhanced. Moreover, localization loss is designed and adopted in model training phase, and Matrix NMS method is used in the inference stage to improve the detection efficiency and accuracy. Benchmark evaluation is performed on two public databases with the results compared with other eight state-of-the-art detection algorithms. At IoU = 0.5 level, proposed FMD-Yolo has achieved the best precision AP50 of 92.0% and 88.4% on the two datasets, and AP75 at IoU = 0.75 has improved 5.5% and 3.9% respectively compared with the second one, which demonstrates the superiority of FMD-Yolo in face mask detection with both theoretical values and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木虫完成签到,获得积分10
1秒前
小二郎应助无情山水采纳,获得10
1秒前
1秒前
大晨发布了新的文献求助10
1秒前
赖道之发布了新的文献求助10
2秒前
2秒前
1111发布了新的文献求助10
2秒前
坤坤发布了新的文献求助10
2秒前
酷波er应助包容的剑采纳,获得10
2秒前
3秒前
3秒前
genoy完成签到,获得积分10
3秒前
乔乔完成签到,获得积分10
3秒前
吾问无为谓完成签到,获得积分20
5秒前
5秒前
5秒前
花椒泡茶完成签到,获得积分10
5秒前
5秒前
小马哥完成签到,获得积分20
5秒前
5秒前
6秒前
mkW完成签到,获得积分10
6秒前
读研好难完成签到,获得积分10
6秒前
跳跃的罡发布了新的文献求助10
6秒前
论文侠完成签到 ,获得积分10
6秒前
神勇的雅香应助梓榆采纳,获得10
6秒前
6秒前
深情安青应助Mlwwq采纳,获得10
6秒前
脑洞疼应助耿强采纳,获得10
7秒前
江梦松完成签到,获得积分10
7秒前
7秒前
7秒前
liu发布了新的文献求助10
8秒前
9秒前
9秒前
水獭发布了新的文献求助10
10秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
10秒前
10秒前
LZZ发布了新的文献求助10
10秒前
昵称发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762