FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public

计算机科学 卷积神经网络 稳健性(进化) 人工智能 水准点(测量) 推论 特征提取 提取器 2019年冠状病毒病(COVID-19) 模式识别(心理学) 残余物 数据挖掘 算法 传染病(医学专业) 工程类 病理 基因 化学 医学 地理 生物化学 工艺工程 疾病 大地测量学
作者
Peishu Wu,Han Li,Nianyin Zeng,Fengping Li
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:117: 104341-104341 被引量:28
标识
DOI:10.1016/j.imavis.2021.104341
摘要

Coronavirus disease 2019 (COVID-19) is a world-wide epidemic and efficient prevention and control of this disease has become the focus of global scientific communities. In this paper, a novel face mask detection framework FMD-Yolo is proposed to monitor whether people wear masks in a right way in public, which is an effective way to block the virus transmission. In particular, the feature extractor employs Im-Res2Net-101 which combines Res2Net module and deep residual network, where utilization of hierarchical convolutional structure, deformable convolution and non-local mechanisms enables thorough information extraction from the input. Afterwards, an enhanced path aggregation network En-PAN is applied for feature fusion, where high-level semantic information and low-level details are sufficiently merged so that the model robustness and generalization ability can be enhanced. Moreover, localization loss is designed and adopted in model training phase, and Matrix NMS method is used in the inference stage to improve the detection efficiency and accuracy. Benchmark evaluation is performed on two public databases with the results compared with other eight state-of-the-art detection algorithms. At IoU = 0.5 level, proposed FMD-Yolo has achieved the best precision AP50 of 92.0% and 88.4% on the two datasets, and AP75 at IoU = 0.75 has improved 5.5% and 3.9% respectively compared with the second one, which demonstrates the superiority of FMD-Yolo in face mask detection with both theoretical values and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李健应助科研小达子采纳,获得10
2秒前
包容的琦完成签到,获得积分20
3秒前
4秒前
科研兵发布了新的文献求助10
4秒前
5秒前
qianqian完成签到 ,获得积分10
5秒前
LILI完成签到 ,获得积分10
5秒前
包容的琦发布了新的文献求助30
6秒前
6秒前
6秒前
脑洞疼应助Exotic采纳,获得10
6秒前
7秒前
8秒前
8秒前
VPN不好用发布了新的文献求助10
8秒前
678完成签到 ,获得积分10
9秒前
10秒前
zj发布了新的文献求助30
10秒前
谦让的冰颜完成签到,获得积分10
10秒前
10秒前
TBI发布了新的文献求助10
11秒前
12秒前
elfff发布了新的文献求助10
13秒前
科研通AI2S应助superyang采纳,获得10
13秒前
16秒前
平常的半凡完成签到 ,获得积分10
16秒前
MMMMMM完成签到 ,获得积分10
18秒前
桐桐应助Zoeyz采纳,获得10
19秒前
19秒前
19秒前
20秒前
吃碗大米饭完成签到,获得积分10
21秒前
高兴的谷菱完成签到,获得积分20
21秒前
xiaogui应助科研通管家采纳,获得30
22秒前
李健应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
小金星星应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159611
求助须知:如何正确求助?哪些是违规求助? 2810617
关于积分的说明 7888779
捐赠科研通 2469621
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012