免疫检查点
免疫系统
抗体
阻断抗体
癌症研究
癌症免疫疗法
免疫疗法
细胞毒性T细胞
单克隆抗体
免疫学
归巢(生物学)
化学
生物
生物化学
生态学
体外
作者
Jie Fan,Yanru Feng,Ze Tao,Jie Chen,Hao Yang,Qiuxiao Shi,Li Zhao,Tianshan She,Heng Li,Youmei Jin,Jingqiu Cheng,Xiaofeng Lu
标识
DOI:10.1016/j.jconrel.2021.11.003
摘要
Immunotherapies based on immune checkpoint-blocking antibodies have been considered the most attractive cancer treatments in recent years. However, the systemic administration of immune checkpoint-blocking antibodies is limited by low response rates and high risk of inducing immune-related adverse events (irAEs), which might be overcome by the tumor-targeted delivery of these antibodies. To achieve tumor-targeted delivery, immune checkpoint-blocking antibodies are usually modified with tumor-homing ligands through difficult genetic fusion or chemical conjugation. As most immune checkpoint-blocking antibodies are immunoglobin G (IgG) antibodies, we hypothesize that these IgG antibodies might be noncovalently modified with a tumor-homing ligand fused to an IgG-binding domain (IgBD). To test this hypothesis, the tumor-homing ZPDGFRβ affibody, which targets platelet-derived growth factor receptor β (PDGFRβ), was fused to the Fab-selective IgBD in a trimeric format. After mixing ZPDGFRβ fused to the IgBD with immune checkpoint-blocking IgG against programmed death-ligand 1 (αPD-L1), a novel homogenous complex was formed, indicating that αPD-L1 had been successfully modified with ZPDGFRβ fused to the IgBD. ZPDGFRβ-modified αPD-L1 bound to both PDGFRβ and PD-L1, thus leading to greater tumor uptake and antitumor effects in mice bearing PDGFRβ+PD-L1+ tumor grafts. In addition, due to the broad spectrum of IgBD for IgG, immune checkpoint-blocking IgG antibodies against cytotoxic T-lymphocyte-associated protein 4 (αCTLA-4) and signal regulatory protein alpha (αSIRPα) were also modified with ZPDGFRβ fused to the IgBD. These results demonstrated that a tumor-homing ligand fused to the IgBD might be developed as a versatile platform for the modification of immune checkpoint-blocking IgG antibodies to achieve tumor-targeted delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI