雄激素受体
LNCaP公司
转录组
染色质免疫沉淀
作用机理
前列腺癌
化学
体内
癌症研究
体外
生物
细胞生物学
癌症
基因表达
基因
生物化学
遗传学
发起人
作者
Nan Hyung Hong,Shihua Sun,Peter Virsik,Alessandra Cesano,Elahe A. Mostaghel,Stephen R. Plymate,Han-Jie Zhou,Ronan Le Moigne
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2021-07-01
卷期号:81 (13_Supplement): 1209-1209
被引量:1
标识
DOI:10.1158/1538-7445.am2021-1209
摘要
Abstract The androgen receptor (AR) is a key driver in the growth of prostate cancer and remains a crucial target for therapeutic intervention even in late stages of the disease. While current anti-androgen therapies targeting directly or indirectly the AR ligand binding domain (LBD) are initially effective, resistance ultimately develops. The selective targeting of the N-terminal domain (NTD) of the AR represents a novel method of blocking AR signaling to by-pass LBD-related resistance. EPI-7386 is a potent and metabolically stable NTD inhibitor (aniten) currently in a phase 1 dose-escalation study in mCRPC patients. Here we report the results of a comprehensive in vitro characterization of its mechanism of action. The potency and selectivity of EPI-7386 was determined in cellular models expressing different forms of AR using reporter and cell viability assays. Target engagement was measured by a Cellular Thermal Shift Assay (CETSA). Both Nanostring and RNAseq were used to explore the activity of EPI-7386 on the AR transcriptome. Chromatin immunoprecipitation (ChIP)-seq and ChIP-qPCR were carried out to determine the effect of EPI-7386 on AR genomic occupancy. EPI-7386 exhibited potent activity in inhibiting full-length AR (AR-FL) driven transcriptional activity and also strongly impaired the transcriptional activity and the viability of cellular models driven exclusively by truncated AR protein. Using CETSA, we confirmed that EPI-7386 induced a thermal shift of both AR-FL and AR-V7 (lacking the AR LBD) in LNCaP and LNCaP95, respectively, which is an indication of AR target engagement by EPI-7386. ChIP analyses allowed a deeper understanding of epigenetic and transcriptional regulation driven by EPI-7386. It showed EPI-7386 inhibits androgen-activated AR binding to target gene loci such as KLK3. Additionally, EPI-7386 suppresses AR-regulated target gene expression in a comparable manner as lutamides in three human prostate cancer cell lines, LNCaP, 22Rv1, and VCaP, with a few notable exceptions. As a consequence, the combination of EPI-7386 with lutamides resulted in broader and deeper inhibition of AR-associated transcriptional activity in both LNCaP and VCaP cells. In AR-V7 driven cell lines, LNCaP95 and 22Rv1, EPI-7386 showed superior activity to enzalutamide in inhibiting AR-regulated genes expression. In conclusion, EPI-7386 is a potent AR NTD inhibitor that has the capacity to by-pass AR LBD resistance mechanisms to current anti-androgen therapies by uniquely inhibiting AR-mediated signaling. The agent has the potential for providing clinical benefit as a single agent in patients whose tumors are progressing on anti-androgens or in combination with current anti-androgens in earlier line patients. The Phase I dose escalation first in human clinical trial of EPI-7386 single agent (NCT04421222) is currently enrolling. Citation Format: Nan Hyung Hong, Shihua Sun, Peter Virsik, Alessandra Cesano, Elahe A. Mostaghel, Stephen R. Plymate, Han-Jie Zhou, Ronan Le Moigne. Comprehensive in vitro characterization of the mechanism of action of EPI-7386, an androgen receptor N-terminal domain inhibitor [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1209.
科研通智能强力驱动
Strongly Powered by AbleSci AI