A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting

强化学习 计算机科学 异步通信 趋同(经济学) 人工智能 激励 期限(时间) 深度学习 机器学习 边距(机器学习) 钢筋 理论(学习稳定性) 工程类 经济 计算机网络 物理 量子力学 微观经济学 经济增长 结构工程
作者
Wenyu Zhang,Qian Chen,Jianyong Yan,Shuai Zhang,Jiyuan Xu
出处
期刊:Energy [Elsevier]
卷期号:236: 121492-121492 被引量:76
标识
DOI:10.1016/j.energy.2021.121492
摘要

Accurate load forecasting is challenging due to the significant uncertainty of load demand. Deep reinforcement learning, which integrates the nonlinear fitting ability of deep learning with the decision-making ability of reinforcement learning, has obtained effective solutions to various optimization problems. However, no study has been reported, which used deep reinforcement learning for short-term load forecasting because of the difficulties in handling the high temporal correlation and high convergence instability. In this study, a novel asynchronous deep reinforcement learning model is proposed for short-term load forecasting by addressing the above difficulties. First, a new asynchronous deep deterministic policy gradient method is proposed to disrupt the temporal correlation of different samples to reduce the overestimation of the expected total discount reward of the agent. Further, a new adaptive early forecasting method is proposed to reduce the time cost of model training by adaptively judging the training situation of the agent. Moreover, a new reward incentive mechanism is proposed to stabilize the convergence of model training by taking into account the trend of agent actions at different time steps. The experimental results show that the proposed model achieves higher forecasting accuracy, less time cost, and more stable convergence compared with eleven baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助liu采纳,获得10
刚刚
栖枝完成签到 ,获得积分10
2秒前
摔碎玻璃瓶完成签到,获得积分10
2秒前
maizi应助科研通管家采纳,获得10
3秒前
arabidopsis应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
蔺景轩完成签到 ,获得积分10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
LEO完成签到 ,获得积分10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
arabidopsis应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
arabidopsis应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
yyyyyyyr发布了新的文献求助10
4秒前
忧虑的以菱完成签到,获得积分10
4秒前
lz发布了新的文献求助10
5秒前
YONG完成签到,获得积分10
6秒前
tabblk完成签到 ,获得积分10
6秒前
可爱的哈密瓜完成签到,获得积分10
7秒前
CodeCraft应助初夏采纳,获得10
8秒前
9秒前
一一完成签到,获得积分20
9秒前
科研通AI6应助信号灯采纳,获得10
9秒前
泥娃娃完成签到,获得积分10
10秒前
12秒前
12秒前
ikutovaya完成签到,获得积分10
13秒前
hh发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373872
求助须知:如何正确求助?哪些是违规求助? 4499905
关于积分的说明 14007520
捐赠科研通 4406884
什么是DOI,文献DOI怎么找? 2420755
邀请新用户注册赠送积分活动 1413471
关于科研通互助平台的介绍 1390076