Sequential Recommendation with Graph Neural Networks

计算机科学 杠杆(统计) 联营 图形 理论计算机科学 推荐系统 卷积神经网络 人工智能 机器学习 数据挖掘
作者
Jianxin Chang,Chen Gao,Yu Zheng,Yiqun Hui,Yanan Niu,Yang Song,Depeng Jin,Yong Li
标识
DOI:10.1145/3404835.3462968
摘要

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short forSeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
巅峰囚冰完成签到,获得积分10
6秒前
6秒前
6秒前
丘比特应助要减肥的御姐采纳,获得10
8秒前
xin完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
Youth完成签到,获得积分10
12秒前
阿湫完成签到,获得积分10
12秒前
rachel发布了新的文献求助10
12秒前
12秒前
xiaoyang1986发布了新的文献求助10
13秒前
13秒前
ylky完成签到 ,获得积分10
15秒前
天天快乐应助lyt采纳,获得10
15秒前
15秒前
领导范儿应助大雷采纳,获得10
16秒前
16秒前
16秒前
循环bug完成签到,获得积分10
16秒前
在水一方应助宁学者采纳,获得10
16秒前
18秒前
livrese发布了新的文献求助10
19秒前
酷波er应助超男采纳,获得10
20秒前
21秒前
猪猪hero应助一颗好困芽采纳,获得10
22秒前
科研欢发布了新的文献求助10
23秒前
23秒前
邢夏之发布了新的文献求助10
23秒前
24秒前
赘婿应助livrese采纳,获得10
24秒前
25秒前
天天快乐应助jjj采纳,获得10
25秒前
25秒前
阿苏发布了新的文献求助30
26秒前
快乐战神没烦恼完成签到,获得积分10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565500
求助须知:如何正确求助?哪些是违规求助? 3138438
关于积分的说明 9426808
捐赠科研通 2838854
什么是DOI,文献DOI怎么找? 1560581
邀请新用户注册赠送积分活动 729698
科研通“疑难数据库(出版商)”最低求助积分说明 717589