Fine-grained classification based on multi-scale pyramid convolution networks

计算机科学 核(代数) 卷积(计算机科学) 棱锥(几何) 人工智能 模式识别(心理学) 特征(语言学) 差异(会计) 残余物 比例(比率) 卷积神经网络 数据挖掘 人工神经网络 算法 数学 哲学 会计 业务 物理 组合数学 量子力学 语言学 几何学
作者
Gaihua Wang,Lei Cheng,Jinheng Lin,Dai Yingying,Tianlun Zhang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (7): e0254054-e0254054 被引量:11
标识
DOI:10.1371/journal.pone.0254054
摘要

The large intra-class variance and small inter-class variance are the key factor affecting fine-grained image classification. Recently, some algorithms have been more accurate and efficient. However, these methods ignore the multi-scale information of the network, resulting in insufficient ability to capture subtle changes. To solve this problem, a weakly supervised fine-grained classification network based on multi-scale pyramid is proposed in this paper. It uses pyramid convolution kernel to replace ordinary convolution kernel in residual network, which can expand the receptive field of the convolution kernel and use complementary information of different scales. Meanwhile, the weakly supervised data augmentation network (WS-DAN) is used to prevent over fitting and improve the performance of the model. In addition, a new attention module, which includes spatial attention and channel attention, is introduced to pay more attention to the object part in the image. The comprehensive experiments are carried out on three public benchmarks. It shows that the proposed method can extract subtle feature and achieve classification effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳佳应助hohokuz采纳,获得20
1秒前
耶啵发布了新的文献求助30
1秒前
故意的怜晴完成签到 ,获得积分10
1秒前
1秒前
1秒前
Tireastani应助Silver采纳,获得10
1秒前
Muller完成签到,获得积分10
2秒前
maizhan完成签到,获得积分10
2秒前
文龙发布了新的文献求助10
3秒前
传奇3应助xueerbx采纳,获得10
3秒前
3秒前
李白白白完成签到,获得积分10
4秒前
璐璇完成签到,获得积分10
4秒前
乌云乌云快走开完成签到,获得积分10
4秒前
韩雨桐完成签到,获得积分10
5秒前
十七完成签到 ,获得积分10
5秒前
tanc发布了新的文献求助10
5秒前
花痴的电灯泡完成签到,获得积分10
5秒前
bittersweety完成签到,获得积分10
5秒前
蓝冰完成签到,获得积分10
5秒前
赘婿应助花生采纳,获得10
5秒前
如意枫叶发布了新的文献求助10
6秒前
6秒前
张步完成签到 ,获得积分10
6秒前
rayzhanghl完成签到,获得积分10
6秒前
奋斗老鼠发布了新的文献求助10
7秒前
7秒前
子非我发布了新的文献求助10
7秒前
小程同学发布了新的文献求助10
7秒前
ycg发布了新的文献求助20
8秒前
州府十三完成签到,获得积分20
8秒前
Diss完成签到,获得积分10
8秒前
Orange应助科研通管家采纳,获得30
9秒前
10秒前
云舒应助科研通管家采纳,获得30
10秒前
Orange应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得20
10秒前
yar应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582