Excellent sulfur and water resistance for CO oxidation on Pt single-atom-catalyst supported by defective graphene: The effect of vacancy type

氧化物 化学工程 X射线光电子能谱 Atom(片上系统) 无机化学
作者
Quanguo Jiang,Min Huang,Yushuai Qian,Yicheng Miao,Zhimin Ao
出处
期刊:Applied Surface Science [Elsevier]
卷期号:566: 150624- 被引量:1
标识
DOI:10.1016/j.apsusc.2021.150624
摘要

Abstract The competitive adsorption of sulfur dioxide and water molecules will degrade the performance for CO oxidation catalyst in some processes such as automobile exhaust cleaning or Claus tail gas treatment. In order to study the effect of carbon vacancy on the sulfur and humidity resistance, the adsorption of CO, O2, SO2 and H2O molecules on Pt single-atom-catalyst supported by graphene with single carbon vacancy (Pt-SG) and double carbon vacancy (Pt-DG) have been comparatively investigated by using density functional theory calculations. It shows that the active site of Pt-SG can be blocked by the SO2 and H2O molecules due to their strong affinity towards Pt-SG. However, the carbon divacancy makes Pt atom less attractive towards SO2 and H2O molecules on Pt-DG compared with that on Pt-SG, where the pre-adsorbed SO2 and H2O molecules will be substituted by the CO molecule with larger adsorption energy on Pt-DG, which finally achieves the sulfur and water resistance for Pt-DG. In addition, an efficient Termolecular Eley-Rideal reaction path with a low energy barrier of 0.49 eV for CO oxidation is found on Pt-DG. The significant downshift of CO-5σ orbital levels plays an important role in the formation of new O-C bonds in OCOOCO intermediate on Pt-DG, where the O2-1π orbital is weakened due to its interaction with CO-5σ and CO-1π orbital, which finally facilitates the break of O-O bond and the production of CO2 molecules along the TER mechanism. Overall, the double carbon vacancy can enhance the selective adsorption for CO molecule other than the SO2 and H2O molecules on Pt atom, making the Pt-DG to be an efficient CO oxidation catalyst even in sulfur and humid environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ch完成签到 ,获得积分10
2秒前
4秒前
ajun完成签到,获得积分10
4秒前
4秒前
春江完成签到,获得积分10
4秒前
4秒前
漂亮的松思完成签到,获得积分20
7秒前
7秒前
xiuwen发布了新的文献求助10
8秒前
黑衣人的秘密完成签到,获得积分10
8秒前
8秒前
mushrooms119完成签到,获得积分10
9秒前
9秒前
榨菜发布了新的文献求助10
9秒前
Cindy应助体贴的夕阳采纳,获得10
9秒前
MEME完成签到,获得积分10
10秒前
zfzf0422发布了新的文献求助10
10秒前
10秒前
健忘曼云发布了新的文献求助10
10秒前
drift完成签到,获得积分10
11秒前
11秒前
安谢完成签到,获得积分10
12秒前
852应助小张采纳,获得10
13秒前
活泼的飞双完成签到,获得积分10
14秒前
热情的板栗完成签到,获得积分10
14秒前
15秒前
Loooong应助汤姆采纳,获得10
15秒前
淡定雁开发布了新的文献求助10
15秒前
tianny发布了新的文献求助10
15秒前
111111111发布了新的文献求助10
16秒前
Mian发布了新的文献求助10
16秒前
16秒前
xiuwen完成签到,获得积分10
17秒前
TOMORI酱完成签到,获得积分10
20秒前
justin发布了新的文献求助10
20秒前
皮卡丘完成签到 ,获得积分10
21秒前
21秒前
TT发布了新的文献求助10
22秒前
夜空的光芒完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808