医学
四分位间距
队列
内科学
多发性硬化
逻辑回归
临床孤立综合征
前瞻性队列研究
优势比
置信区间
比例危险模型
扩大残疾状况量表
队列研究
肿瘤科
免疫学
作者
Timo Uphaus,Falk Steffen,Muthuraman Muthuraman,Nina Ripfel,Vinzenz Fleischer,Sergiu Groppa,Tobias Ruck,Sven G. Meuth,Refik Pul,Christoph Kleinschnitz,Erik Ellwardt,Julia Loos,Sinah Engel,Frauke Zipp,Stefan Bittner
标识
DOI:10.1016/j.ebiom.2021.103590
摘要
Easily accessible biomarkers enabling the identification of those patients with multiple sclerosis (MS) who will accumulate irreversible disability in the long term are essential to guide early therapeutic decisions. We here examine the utility of serum neurofilament light chain (sNfL) for forecasting relapse-free disability progression and conversion to secondary progressive MS (SPMS) in the prospective Neurofilamentandlongtermoutcome inMS (NaloMS) cohort.The predictive ability of sNfL at Baseline and sNfL follow-up (FU)/ Baseline (BL) ratio with regard to disability progression was assessed within a development cohort (NaloMS, n=196 patients with relapsing-remitting MS (RRMS) or clinically isolated syndrome) and validated with an external independent cohort (Düsseldorf, Essen, n=204). Both relapse-free EDSS-progression (RFP: inflammatory-independent EDSS-increase 12 months prior to FU) and SPMS-transition (minimum EDSS-score of 3.0) were investigated.During the study period, 17% (n=34) of NaloMS patients suffered from RFP and 14% (n=27) converted to SPMS at FU (validation cohort RFP n=42, SPMS-conversion n=24). sNfL at BL was increased in patients with RFP (10.8 pg/ml (interquartile range (IQR) 7.7-15.0) vs. 7.2 pg/ml (4.5-12.5), p<0.017). In a multivariable logistic regression model, increased sNfL levels at BL (Odds Ratio (OR) 1.02, 95% confidence interval (CI) 1.01-1.04, p=0.012) remained an independent risk factor for RFP and predicted individual RFP risk with an accuracy of 82% (NaloMS) and 83% (validation cohort) as revealed by support vector machine. In addition, the sNfL FU/BL ratio was increased in SPMS-converters (1.16 (0.89-1.70) vs. 0.96 (0.75-1.23), p=0.011). This was confirmed by a multivariable logistic regression model, as sNfL FU/BL ratio remained in the model (OR 1.476, 95%CI 1.078-2,019, p=0.015) and individual sNfL FU/BL ratios showed a predictive accuracy of 72% in NaloMS (63% in the validation cohort) as revealed by machine learning.sNfL levels at baseline predict relapse-free disability progression in a prospective longitudinal cohort study 6 years later. While prediction was confirmed in an independent cohort, sNfL further discriminates patients with SPMS at follow-up and supports early identification of patients at risk for later SPMS conversion.This work was supported by the German Research Council (CRC-TR-128), Else Kröner Fresenius Foundation and Hertie-Stiftung.
科研通智能强力驱动
Strongly Powered by AbleSci AI