Sharing Demand Information with Retailer Under Upstream Competition

利润(经济学) 私人信息检索 微观经济学 产业组织 竞赛(生物学) 信号游戏 业务 上游(联网) 经济 下游(制造业) 信息共享 信息不对称 营销 财务 计算机科学 万维网 生物 计算机安全 计算机网络 生态学
作者
Aditya Jain
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (7): 4983-5001 被引量:62
标识
DOI:10.1287/mnsc.2021.4116
摘要

We analyze demand information sharing collaboration between two manufacturers and a retailer under upstream competition. The manufacturers produce partially substitutable products, which are stocked by the retailer that sells them in the market characterized by random demand. The manufacturers are privately informed about uncertain demand and decide on whether to share this information with the retailer. We show that by not sharing information, a manufacturer ends up distorting its wholesale price upward to signal its private information to the retailer, and under upstream competition, this distortion is propagated to the competing manufacturer. Thus, although a manufacturer’s decision to not share information may benefit or hurt its own profit, this always benefits the competing manufacturer. Under low intensity of competition, signaling-driven distortions exacerbate double marginalization and hurt all parties, whereas under more intense competition, these distortions help manufacturers offset downward pressure on wholesale prices. Thus, in equilibrium similarly informed manufacturers share information in the former case but not in the latter case. Additionally, when manufacturers differ in their information accuracies, only the better-informed manufacturer shares information. The retailer always benefits from both manufacturers sharing information, and its benefits are larger when the better-informed manufacturer shares information. We show existence of a contracting mechanism the retailer can employ to enable information sharing. Finally, we analyze manufacturers’ information acquisition decisions and find that under competition, two manufacturers acquire minimal information so that they are better off not sharing information in the information sharing game. This paper was accepted by Vishal Gaur, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助蜂蜜罐zi采纳,获得10
1秒前
2秒前
xiu完成签到,获得积分10
2秒前
KINDMAGIC发布了新的文献求助10
4秒前
熊逍发布了新的文献求助10
5秒前
Orange应助鱼丸采纳,获得10
5秒前
含蓄垣发布了新的文献求助10
7秒前
9秒前
整齐的霸发布了新的文献求助20
9秒前
9秒前
11秒前
KINDMAGIC完成签到,获得积分10
13秒前
鱼丸发布了新的文献求助10
15秒前
支雨泽发布了新的文献求助10
15秒前
许许完成签到,获得积分10
16秒前
闲听花落完成签到 ,获得积分10
16秒前
橘白应助爱笑的幻姬采纳,获得10
16秒前
西南楚留香完成签到,获得积分10
19秒前
大旭发布了新的文献求助10
20秒前
哔哔鱼发布了新的文献求助10
21秒前
梅子完成签到 ,获得积分10
23秒前
科研通AI5应助RockLee采纳,获得10
23秒前
万能图书馆应助丑丑阿采纳,获得10
24秒前
26秒前
30秒前
30秒前
橘白应助爱笑的幻姬采纳,获得10
30秒前
33秒前
FAN凡完成签到,获得积分20
33秒前
董董发布了新的文献求助10
34秒前
35秒前
35秒前
素简发布了新的文献求助10
36秒前
36秒前
科研通AI5应助支雨泽采纳,获得10
37秒前
jingmishensi发布了新的文献求助10
38秒前
哈哈发布了新的文献求助10
39秒前
39秒前
FAN凡发布了新的文献求助10
41秒前
查理fofo完成签到,获得积分20
41秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741422
求助须知:如何正确求助?哪些是违规求助? 3284072
关于积分的说明 10038118
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646811
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478