Construction and validation of nomogram to predict distant metastasis in osteosarcoma: a retrospective study

列线图 医学 逻辑回归 单变量 骨肉瘤 多元分析 转移 单变量分析 回顾性队列研究 骨转移 肿瘤科 一致性 骨科手术 多元统计 内科学 接收机工作特性 外科 癌症 统计 病理 数学
作者
Shouliang Lu,Yanhua Wang,Guangfei Liu,Lu Wang,Pengfei Wu,Yong Li,Can Cheng
出处
期刊:Journal of Orthopaedic Surgery and Research [Springer Nature]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13018-021-02376-8
摘要

Abstract Background Osteosarcoma is most common malignant bone tumors. OS patients with metastasis have a poor prognosis. There are few tools to assess metastasis; we want to establish a nomogram to evaluate metastasis of osteosarcoma. Methods Data from the Surveillance, Epidemiology, and End Results (SEER) database of patients with osteosarcoma were retrieved for retrospective analysis. We identify risk factors through univariate logistic regression and multivariate logistic regression analysis. Based on the results of multivariate analysis, we established a nomogram to predict metastasis of patients with osteosarcoma and used the concordance index (C-index) and calibration curves to test models. Results One thousand fifteen cases were obtained from the SEER database. In the univariate and multivariate logistic regression analysis, age, primary site, grade, T stage, and surgery are risk factors. The nomogram for metastasis was constructed based on these factors. The C-index of the training and validation cohort was 0.754 and 0.716. This means that the nomogram predictions of patients with metastasis are correct, and the calibration plots also show the good prediction performance of the nomogram. Conclusion We successfully develop the nomogram which can reliably predict metastasis in different patients with osteosarcoma and it only required basic information of patients. The nomogram that we developed can help clinicians better predict the metastasis with OS and determine postoperative treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
顺顺过过完成签到,获得积分10
刚刚
qaswop发布了新的文献求助10
1秒前
zzzz完成签到 ,获得积分10
1秒前
ss发布了新的文献求助10
1秒前
1秒前
黄花菜完成签到,获得积分10
1秒前
liuliuliu完成签到,获得积分10
1秒前
思源应助大胆的含卉采纳,获得10
2秒前
2秒前
2秒前
2秒前
shyotion完成签到,获得积分10
2秒前
lyw完成签到 ,获得积分10
2秒前
2秒前
www完成签到 ,获得积分10
2秒前
3秒前
高大的幻枫完成签到,获得积分10
3秒前
浮游应助summer采纳,获得10
3秒前
BowieHuang应助summer采纳,获得10
3秒前
五水硫酸铜完成签到,获得积分10
3秒前
4秒前
4秒前
aassdj发布了新的文献求助10
4秒前
HappyBoy完成签到 ,获得积分10
5秒前
5秒前
HXH关闭了HXH文献求助
5秒前
lalala发布了新的文献求助10
5秒前
Clarie发布了新的文献求助10
6秒前
6秒前
霍仁维思完成签到,获得积分10
6秒前
6秒前
华仔应助啊喽哈采纳,获得10
6秒前
bkagyin应助zm采纳,获得10
6秒前
6秒前
大个应助园游会采纳,获得10
7秒前
leo应助purple采纳,获得20
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603