Construction and validation of nomogram to predict distant metastasis in osteosarcoma: a retrospective study

列线图 医学 逻辑回归 单变量 骨肉瘤 多元分析 转移 单变量分析 回顾性队列研究 骨转移 肿瘤科 一致性 骨科手术 多元统计 内科学 接收机工作特性 外科 癌症 统计 病理 数学
作者
Shouliang Lu,Yanhua Wang,Guangfei Liu,Lu Wang,Pengfei Wu,Yong Li,Can Cheng
出处
期刊:Journal of Orthopaedic Surgery and Research [Springer Nature]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13018-021-02376-8
摘要

Abstract Background Osteosarcoma is most common malignant bone tumors. OS patients with metastasis have a poor prognosis. There are few tools to assess metastasis; we want to establish a nomogram to evaluate metastasis of osteosarcoma. Methods Data from the Surveillance, Epidemiology, and End Results (SEER) database of patients with osteosarcoma were retrieved for retrospective analysis. We identify risk factors through univariate logistic regression and multivariate logistic regression analysis. Based on the results of multivariate analysis, we established a nomogram to predict metastasis of patients with osteosarcoma and used the concordance index (C-index) and calibration curves to test models. Results One thousand fifteen cases were obtained from the SEER database. In the univariate and multivariate logistic regression analysis, age, primary site, grade, T stage, and surgery are risk factors. The nomogram for metastasis was constructed based on these factors. The C-index of the training and validation cohort was 0.754 and 0.716. This means that the nomogram predictions of patients with metastasis are correct, and the calibration plots also show the good prediction performance of the nomogram. Conclusion We successfully develop the nomogram which can reliably predict metastasis in different patients with osteosarcoma and it only required basic information of patients. The nomogram that we developed can help clinicians better predict the metastasis with OS and determine postoperative treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助皮卡丘大王采纳,获得10
刚刚
刚刚
小周睡不饱完成签到,获得积分10
刚刚
刚刚
小虎发布了新的文献求助10
刚刚
吴彦祖的通通完成签到,获得积分10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Wvzzzzz完成签到,获得积分10
2秒前
sunshine完成签到 ,获得积分10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
香蕉觅云应助顺顺黎黎采纳,获得10
3秒前
cj发布了新的文献求助10
4秒前
4秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401