药代动力学
缺血
药理学
化学
冰片
尼莫地平
脂质体
脑缺血
免疫印迹
体内
医学
内科学
病理
生物化学
钙
中医药
生物
生物技术
替代医学
基因
作者
Xiaoli Ye,Xueying Peng,Qing Song,Taohui Zeng,Xuefeng Xiong,Yuye Huang,Xinjun Cai,Chao Zhang,Sheng Wang,Binhui Wang
标识
DOI:10.1080/03639045.2021.1908331
摘要
To investigate the metabolism and brain tissue distribution of borneol-modified tanshinone IIA liposome (BO-TA-Lip) and its effect on NF-κB and ICAM-1 in cerebral ischemia reperfusion rats, thereby exploring the ameliorative mechanism of BO-TA-Lip on ischemic encephalopathy.Particle size, entrapment efficiency, drug loading were measured to evaluate the preparation comprehensively. Metabolism and brain tissue distributions in vivo were measured by HPLC, and the pharmacokinetic parameters were calculated. In addition, 24 SD rats were randomly divided into sham, model, STS (sodium tanshinone IIA sulfonate, 30 mg/kg) and BO-TA-Lip groups (44 mg/kg). The middle cerebral artery occlusion (MCAO) rats were constructed with thread embolism method. Neurological deficits were scored using Zea Longa scoring standard. TTC and HE staining were used for the cerebral infarction and histopathological examination, respectively. The protein expression was examined by immunohistochemistry and Western blot.The average particle size, encapsulation efficiency and drug loading of BO-TA-Lip were (135.33 ± 7.25) nm, (85.95 ± 3.20)% and (4.06 ± 0.31)%, respectively. Both in the pharmacokinetic analysis of plasma and brain tissue, in BO-TA-Lip group, the peak concentration and the area under the curve increased, and the clearance rate decreased. The neurological deficit scores and infarct area of the BO-TA-Lip group were significantly lower than that of the model and STS groups. Besides, BO-TA-Lip reduced the protein expression of NF-κB, ICAM-1, IL-1β, TNF-α and IL-6 in the brain tissue.BO-TA-Lip had higher bioavailability and better absorption in brain tissue, and could improve cerebral ischemia reperfusion injury, which might be related to the inhibitory effect of BO-TA-Lip in expression of NF-κB and ICAM-1.
科研通智能强力驱动
Strongly Powered by AbleSci AI