Anatomy-guided PET reconstruction using l 1 bowsher prior

先验概率 平滑的 图像质量 磁共振成像 计算机视觉 成像体模 迭代重建 模式识别(心理学) 计算机科学 核医学 正电子发射断层摄影术 图像(数学) 断层摄影术 人工智能 贝叶斯概率 放射科 医学
作者
Seung Gul Kang,Jae Sung Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (9): 095010-095010 被引量:3
标识
DOI:10.1088/1361-6560/abf2f7
摘要

Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher's method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on thel1-norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the originall2and proposedl1Bowsher priors was conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposedl1Bowsher prior methods than the original Bowsher prior. The originall2Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposedl1Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced byl1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DecC发布了新的文献求助30
1秒前
霸气傲蕾发布了新的文献求助10
1秒前
hahhha发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
ll完成签到,获得积分10
1秒前
2秒前
糊图酱完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
月落星沉发布了新的文献求助10
3秒前
TingWan发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
晨曦发布了新的文献求助10
4秒前
LYB吕完成签到,获得积分10
4秒前
LIEN应助mmmm采纳,获得10
4秒前
5秒前
英姑应助薛武采纳,获得10
5秒前
田様应助STP顶峰相见采纳,获得30
5秒前
Charlse_Su完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
MX完成签到,获得积分10
6秒前
6秒前
Devil发布了新的文献求助10
6秒前
搞怪人雄发布了新的文献求助10
6秒前
zyzy发布了新的文献求助10
6秒前
似乎一场梦完成签到 ,获得积分10
7秒前
FAN完成签到,获得积分10
7秒前
uupp完成签到,获得积分10
7秒前
xiaofeiyang1122完成签到,获得积分10
8秒前
daisy完成签到,获得积分10
8秒前
子车茗应助可言鳕鱼采纳,获得50
8秒前
9秒前
Hanoi347应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095