Anatomy-guided PET reconstruction using l 1 bowsher prior

先验概率 平滑的 图像质量 磁共振成像 计算机视觉 成像体模 迭代重建 模式识别(心理学) 计算机科学 核医学 正电子发射断层摄影术 图像(数学) 断层摄影术 人工智能 贝叶斯概率 放射科 医学
作者
Seung Gul Kang,Jae Sung Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (9): 095010-095010 被引量:3
标识
DOI:10.1088/1361-6560/abf2f7
摘要

Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher's method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on thel1-norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the originall2and proposedl1Bowsher priors was conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposedl1Bowsher prior methods than the original Bowsher prior. The originall2Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposedl1Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced byl1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhengmin发布了新的文献求助10
刚刚
asdfghjkl完成签到,获得积分10
1秒前
努力努力123完成签到,获得积分10
1秒前
wongshanshan应助grandthief采纳,获得10
3秒前
5秒前
不配.应助芊羽采纳,获得10
5秒前
6秒前
Chirstina完成签到,获得积分10
6秒前
lljken完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
丘比特应助一口饺子采纳,获得10
9秒前
可爱苹果完成签到 ,获得积分10
11秒前
Yyy发布了新的文献求助10
11秒前
好好睡觉完成签到,获得积分10
11秒前
11秒前
lin发布了新的文献求助10
13秒前
13秒前
梅子酒发布了新的文献求助10
14秒前
魔幻的千山完成签到,获得积分20
14秒前
春信共竹知完成签到,获得积分10
15秒前
深情安青应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
知非发布了新的文献求助10
19秒前
19秒前
小马甲应助Joshua采纳,获得20
20秒前
22秒前
23秒前
23秒前
思源应助Docyongsun采纳,获得10
24秒前
缺牙巴完成签到 ,获得积分10
24秒前
25秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178430
求助须知:如何正确求助?哪些是违规求助? 2829406
关于积分的说明 7971391
捐赠科研通 2490784
什么是DOI,文献DOI怎么找? 1327951
科研通“疑难数据库(出版商)”最低求助积分说明 635353
版权声明 602904