Anatomy-guided PET reconstruction using l 1 bowsher prior

先验概率 平滑的 图像质量 磁共振成像 计算机视觉 成像体模 迭代重建 模式识别(心理学) 计算机科学 核医学 正电子发射断层摄影术 图像(数学) 断层摄影术 人工智能 贝叶斯概率 放射科 医学
作者
Seung Gul Kang,Jae Sung Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (9): 095010-095010 被引量:3
标识
DOI:10.1088/1361-6560/abf2f7
摘要

Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher's method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on thel1-norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the originall2and proposedl1Bowsher priors was conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposedl1Bowsher prior methods than the original Bowsher prior. The originall2Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposedl1Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced byl1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang完成签到,获得积分10
1秒前
zhongjiaweiv发布了新的文献求助10
1秒前
Joseph发布了新的文献求助10
1秒前
fd163c完成签到,获得积分10
2秒前
xx完成签到,获得积分10
3秒前
sfwrbh发布了新的文献求助10
3秒前
LZYJJ发布了新的文献求助10
3秒前
3秒前
pangdahai完成签到,获得积分10
4秒前
无极微光应助哆啦A榕采纳,获得20
4秒前
栢君苏mini完成签到,获得积分10
5秒前
Azyyyy完成签到,获得积分10
5秒前
chengcheng完成签到,获得积分10
5秒前
6秒前
6秒前
123完成签到,获得积分10
7秒前
从全世界路过完成签到 ,获得积分10
7秒前
六六大顺完成签到 ,获得积分10
8秒前
Gtx完成签到,获得积分10
8秒前
9秒前
elevEn完成签到,获得积分10
9秒前
10秒前
Aaaaaaa发布了新的文献求助10
11秒前
走过发布了新的文献求助10
12秒前
完美世界应助xiantianhappy采纳,获得10
12秒前
深情安青应助LL采纳,获得10
12秒前
传奇3应助michael采纳,获得10
13秒前
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
123发布了新的文献求助10
16秒前
17秒前
柴犬小太郎完成签到,获得积分10
17秒前
17秒前
suai完成签到,获得积分10
18秒前
花痴的鹰发布了新的文献求助10
19秒前
19秒前
cangmingzi完成签到,获得积分10
19秒前
无语完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540459
求助须知:如何正确求助?哪些是违规求助? 4626994
关于积分的说明 14601951
捐赠科研通 4568032
什么是DOI,文献DOI怎么找? 2504328
邀请新用户注册赠送积分活动 1481989
关于科研通互助平台的介绍 1453623