Anatomy-guided PET reconstruction using l 1 bowsher prior

先验概率 平滑的 图像质量 磁共振成像 计算机视觉 成像体模 迭代重建 模式识别(心理学) 计算机科学 核医学 正电子发射断层摄影术 图像(数学) 断层摄影术 人工智能 贝叶斯概率 放射科 医学
作者
Seung Gul Kang,Jae Sung Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (9): 095010-095010 被引量:3
标识
DOI:10.1088/1361-6560/abf2f7
摘要

Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher's method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on thel1-norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the originall2and proposedl1Bowsher priors was conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposedl1Bowsher prior methods than the original Bowsher prior. The originall2Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposedl1Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced byl1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朝花夕拾发布了新的文献求助10
1秒前
2秒前
wangyanling完成签到 ,获得积分10
2秒前
幼汁汁鬼鬼完成签到,获得积分10
2秒前
善学以致用应助111采纳,获得30
3秒前
dayema发布了新的文献求助10
3秒前
3秒前
vvvvv发布了新的文献求助10
5秒前
大意的指甲油完成签到,获得积分10
6秒前
6秒前
8秒前
somous发布了新的文献求助20
8秒前
鲍光荣发布了新的文献求助30
8秒前
8秒前
8秒前
如意冥茗完成签到,获得积分10
9秒前
shufei发布了新的文献求助10
9秒前
科研通AI6应助虚心的靖仇采纳,获得10
9秒前
浮游应助风语村采纳,获得10
9秒前
9秒前
佩奇666发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
新宇星辰发布了新的文献求助10
12秒前
充电宝应助忧郁的夏槐采纳,获得30
12秒前
13秒前
科研通AI2S应助lll采纳,获得10
14秒前
dg_fisher发布了新的文献求助10
14秒前
张张洼发布了新的文献求助10
14秒前
CodeCraft应助fengyu采纳,获得10
15秒前
15秒前
研友_VZG7GZ应助朝花夕拾采纳,获得10
15秒前
cm515531发布了新的文献求助10
15秒前
核桃完成签到 ,获得积分10
16秒前
三金发布了新的文献求助10
16秒前
17秒前
17秒前
liuying990209发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355483
求助须知:如何正确求助?哪些是违规求助? 4487366
关于积分的说明 13969755
捐赠科研通 4387995
什么是DOI,文献DOI怎么找? 2410805
邀请新用户注册赠送积分活动 1403340
关于科研通互助平台的介绍 1376902