Anatomy-guided PET reconstruction using l 1 bowsher prior

先验概率 平滑的 图像质量 磁共振成像 计算机视觉 成像体模 迭代重建 模式识别(心理学) 计算机科学 核医学 正电子发射断层摄影术 图像(数学) 断层摄影术 人工智能 贝叶斯概率 放射科 医学
作者
Seung Gul Kang,Jae Sung Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (9): 095010-095010 被引量:3
标识
DOI:10.1088/1361-6560/abf2f7
摘要

Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher's method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on thel1-norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the originall2and proposedl1Bowsher priors was conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposedl1Bowsher prior methods than the original Bowsher prior. The originall2Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposedl1Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced byl1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
承乐发布了新的文献求助10
1秒前
adelalady发布了新的文献求助10
1秒前
1秒前
善学以致用应助美年达采纳,获得10
2秒前
2秒前
2秒前
Solitude完成签到,获得积分10
3秒前
1282941496完成签到,获得积分10
4秒前
简单的方盒完成签到,获得积分20
4秒前
希望天下0贩的0应助heal采纳,获得10
4秒前
4秒前
兜兜窦完成签到,获得积分10
4秒前
久念发布了新的文献求助10
4秒前
专注的问寒应助帅哥吴克采纳,获得20
5秒前
5秒前
5秒前
6秒前
流云发布了新的文献求助10
6秒前
Heinrich完成签到,获得积分10
6秒前
大观天下发布了新的文献求助10
7秒前
ming完成签到 ,获得积分10
7秒前
桐桐应助高斯采纳,获得10
7秒前
912小霸王发布了新的文献求助10
7秒前
呢呢完成签到,获得积分10
7秒前
焦爽发布了新的文献求助10
7秒前
艾路完成签到,获得积分10
7秒前
无极微光应助朴素雨雪采纳,获得20
7秒前
清脆雪巧完成签到,获得积分10
7秒前
Orange应助H星科23456采纳,获得30
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
番茄杀手完成签到 ,获得积分10
9秒前
9秒前
科研通AI2S应助susu采纳,获得10
9秒前
Mic关闭了Mic文献求助
10秒前
10秒前
SQ发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603