化学
催化作用
瓶子
化学工程
纳米技术
冶金
无机化学
有机化学
复合材料
工程类
材料科学
作者
Zhen Zhang,Guobin Wen,Dan Luo,Bohua Ren,Yanfei Zhu,Rui Gao,Haozhen Dou,Guiru Sun,Ming Feng,Zhengyu Bai,Aiping Yu,Zhongwei Chen
摘要
Electrochemical CO2 reduction (CO2RR) using renewable energy sources represents a sustainable means of producing carbon-neutral fuels. Unfortunately, low energy efficiency, poor product selectivity, and rapid deactivation are among the most intractable challenges of CO2RR electrocatalysts. Here, we strategically propose a "two ships in a bottle" design for ternary Zn–Ag–O catalysts, where ZnO and Ag phases are twinned to constitute an individual ultrafine nanoparticle impregnated inside nanopores of an ultrahigh-surface-area carbon matrix. Bimetallic electron configurations are modulated by constructing a Zn–Ag–O interface, where the electron density reconfiguration arising from electron delocalization enhances the stabilization of the *COOH intermediate favorable for CO production, while promoting CO selectivity and suppressing HCOOH generation by altering the rate-limiting step toward a high thermodynamic barrier for forming HCOO*. Moreover, the pore-constriction mechanism restricts the bimetallic particles to nanosized dimensions with abundant Zn–Ag–O heterointerfaces and exposed active sites, meanwhile prohibiting detachment and agglomeration of nanoparticles during CO2RR for enhanced stability. The designed catalysts realize 60.9% energy efficiency and 94.1 ± 4.0% Faradaic efficiency toward CO, together with a remarkable stability over 6 days. Beyond providing a high-performance CO2RR electrocatalyst, this work presents a promising catalyst-design strategy for efficient energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI