材料科学
介观物理学
钙钛矿(结构)
介孔材料
光电子学
电极
图层(电子)
电荷(物理)
萃取(化学)
卤化物
钙钛矿太阳能电池
纳米技术
太阳能电池
化学工程
无机化学
催化作用
凝聚态物理
化学
物理化学
工程类
物理
色谱法
量子力学
生物化学
作者
Xiongfeng Lin,Jianfeng Lu,Sonia R. Raga,David P. McMeekin,Qingdong Ou,Andrew D. Scully,Boer Tan,Anthony S. R. Chesman,Siqi Deng,Boya Zhao,Yi‐Bing Cheng,Udo Bach
标识
DOI:10.1002/aenm.202100053
摘要
Abstract As the performance of organic–inorganic halide perovskite solar cells approaches their practical limits, the use of back‐contact architectures, which eliminate parasitic light absorption, provides an effective route toward higher device efficiencies. However, a poor understanding of the underlying device physics has limited further performance improvements. Here a mesoporous charge‐transporting layer is introduced into quasi‐interdigitated back‐contact perovskite devices and the charge extraction behavior with an increased interfacial contact area is studied. The results show that the incorporation of a thin mesoporous titanium dioxide layer significantly shortens the charge‐transfer lifetime and results in more efficient and balanced charge extraction dynamics. A high short‐circuit current density of 21.3 mA cm –2 is achieved using a polycrystalline perovskite layer on a mesoscopic quasi‐interdigitated back‐contact electrode, a record for this type of device architecture.
科研通智能强力驱动
Strongly Powered by AbleSci AI