Optimal lighting control in greenhouse by incorporating sunlight prediction

阳光 温室 环境科学 人造光 控制(管理) 计算机科学 农业工程 工程类 人工智能 照度 光学 物理 生物 园艺
作者
Sahand Mosharafian,Shirin Afzali,Geoffrey M. Weaver,Marc W. van Iersel,Javad Mohammadpour Velni
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:188: 106300-106300 被引量:20
标识
DOI:10.1016/j.compag.2021.106300
摘要

• Developed a sunlight prediction method based on a time-variant Markov model. • Devised an optimal prediction-based supplemental lighting method in greenhouses. • Minimized the lighting cost by formulating the underlying problem as a constrained convex optimization problem; • Showed supplemental lighting electricity cost saving of up to 45% during a year. Supplemental lighting is an effective means for increasing greenhouse productivity. Recently, the use of light-emitting diodes (LEDs), capable of precise and quick dimmability, has increased in greenhouses. However, electricity cost of lighting can be significant, and hence, it is necessary to find optimal lighting strategies to minimize electrical lighting cost. In this paper, we model supplemental lighting in the greenhouses equipped with LEDs as a constrained optimization problem, and we aim to minimize electricity cost of supplemental lighting. We consider not only plant daily light integral (DLI) need during its photoperiod but also sunlight prediction and variable electricity pricing in our model. We use Markov chains to model sunlight irradiance and predict it during the day. By taking sunlight prediction information into account, we avoid supplying more light than the crop requires. Therefore, our lighting strategy prepares sufficient light for plant growth while minimizing electricity cost during the day. We propose an algorithm to find optimal supplemental lighting and evaluate its performance through exhaustive simulation studies using a whole year of weather data and compare it to a heuristic method, which aims to supply a fixed photosynthetic photon flux density (PPFD) to plants at each time step during the day. In addition to simulation studies, we also implemented the proposed lighting strategy in a research greenhouse in Athens, GA. Our prediction-based lighting approach shows (on average) over 45% electricity cost reduction compared to the heuristic method throughout the entire year.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鹅发布了新的文献求助10
1秒前
1秒前
1秒前
美女发布了新的文献求助10
1秒前
Zed完成签到,获得积分10
1秒前
心静听炊烟完成签到,获得积分10
2秒前
小学森完成签到,获得积分10
2秒前
苏苏发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助duo采纳,获得10
3秒前
胚芽发布了新的文献求助10
4秒前
英俊的铭应助林兮采纳,获得10
4秒前
ding应助vixerunt采纳,获得10
4秒前
小录发布了新的文献求助10
4秒前
MM驳回了deng应助
4秒前
球球发布了新的文献求助10
5秒前
顾矜应助冷艳中蓝采纳,获得10
5秒前
uncle完成签到,获得积分10
5秒前
Hu发布了新的文献求助10
5秒前
zdy!完成签到,获得积分10
5秒前
苗苗发布了新的文献求助10
5秒前
量子玫瑰发布了新的文献求助10
6秒前
6秒前
wy发布了新的文献求助10
6秒前
6秒前
欣喜的初雪完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
SciGPT应助疯狂的寻绿采纳,获得10
8秒前
能干妙竹完成签到,获得积分10
8秒前
小鹅完成签到,获得积分10
8秒前
ww简完成签到,获得积分10
9秒前
无极微光应助ZM采纳,获得20
9秒前
monster0101完成签到 ,获得积分10
10秒前
10秒前
Hello应助斯文莺采纳,获得10
10秒前
科研通AI6应助脑洞大开采纳,获得10
10秒前
Lucas应助球球采纳,获得10
10秒前
zdy!发布了新的文献求助10
10秒前
小二郎应助任性秋烟采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660943
求助须知:如何正确求助?哪些是违规求助? 4836395
关于积分的说明 15092694
捐赠科研通 4819601
什么是DOI,文献DOI怎么找? 2579405
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492605