Optimal lighting control in greenhouse by incorporating sunlight prediction

阳光 温室 环境科学 人造光 控制(管理) 计算机科学 农业工程 工程类 人工智能 照度 光学 物理 生物 园艺
作者
Sahand Mosharafian,Shirin Afzali,Geoffrey M. Weaver,Marc W. van Iersel,Javad Mohammadpour Velni
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:188: 106300-106300 被引量:20
标识
DOI:10.1016/j.compag.2021.106300
摘要

• Developed a sunlight prediction method based on a time-variant Markov model. • Devised an optimal prediction-based supplemental lighting method in greenhouses. • Minimized the lighting cost by formulating the underlying problem as a constrained convex optimization problem; • Showed supplemental lighting electricity cost saving of up to 45% during a year. Supplemental lighting is an effective means for increasing greenhouse productivity. Recently, the use of light-emitting diodes (LEDs), capable of precise and quick dimmability, has increased in greenhouses. However, electricity cost of lighting can be significant, and hence, it is necessary to find optimal lighting strategies to minimize electrical lighting cost. In this paper, we model supplemental lighting in the greenhouses equipped with LEDs as a constrained optimization problem, and we aim to minimize electricity cost of supplemental lighting. We consider not only plant daily light integral (DLI) need during its photoperiod but also sunlight prediction and variable electricity pricing in our model. We use Markov chains to model sunlight irradiance and predict it during the day. By taking sunlight prediction information into account, we avoid supplying more light than the crop requires. Therefore, our lighting strategy prepares sufficient light for plant growth while minimizing electricity cost during the day. We propose an algorithm to find optimal supplemental lighting and evaluate its performance through exhaustive simulation studies using a whole year of weather data and compare it to a heuristic method, which aims to supply a fixed photosynthetic photon flux density (PPFD) to plants at each time step during the day. In addition to simulation studies, we also implemented the proposed lighting strategy in a research greenhouse in Athens, GA. Our prediction-based lighting approach shows (on average) over 45% electricity cost reduction compared to the heuristic method throughout the entire year.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小崽总完成签到,获得积分10
刚刚
多罗罗完成签到,获得积分10
1秒前
落花生完成签到,获得积分10
1秒前
粗犷的灵松完成签到,获得积分10
2秒前
2秒前
yjzzz完成签到,获得积分10
2秒前
2秒前
路寻完成签到,获得积分10
2秒前
zzyt完成签到,获得积分10
2秒前
wen发布了新的文献求助10
3秒前
4秒前
明理小蜜蜂完成签到,获得积分20
4秒前
4秒前
Angelica1021完成签到 ,获得积分10
6秒前
zzyt发布了新的文献求助10
7秒前
7秒前
zhihaiyu完成签到 ,获得积分10
7秒前
lyric发布了新的文献求助10
7秒前
飞云之下发布了新的文献求助10
8秒前
星空完成签到 ,获得积分10
8秒前
8秒前
279完成签到,获得积分10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
小阳完成签到 ,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
jiangshanshan发布了新的文献求助10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
10秒前
池羽完成签到,获得积分10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027