Optimal lighting control in greenhouse by incorporating sunlight prediction

阳光 温室 环境科学 人造光 控制(管理) 计算机科学 农业工程 工程类 人工智能 照度 光学 物理 生物 园艺
作者
Sahand Mosharafian,Shirin Afzali,Geoffrey M. Weaver,Marc W. van Iersel,Javad Mohammadpour Velni
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:188: 106300-106300 被引量:20
标识
DOI:10.1016/j.compag.2021.106300
摘要

• Developed a sunlight prediction method based on a time-variant Markov model. • Devised an optimal prediction-based supplemental lighting method in greenhouses. • Minimized the lighting cost by formulating the underlying problem as a constrained convex optimization problem; • Showed supplemental lighting electricity cost saving of up to 45% during a year. Supplemental lighting is an effective means for increasing greenhouse productivity. Recently, the use of light-emitting diodes (LEDs), capable of precise and quick dimmability, has increased in greenhouses. However, electricity cost of lighting can be significant, and hence, it is necessary to find optimal lighting strategies to minimize electrical lighting cost. In this paper, we model supplemental lighting in the greenhouses equipped with LEDs as a constrained optimization problem, and we aim to minimize electricity cost of supplemental lighting. We consider not only plant daily light integral (DLI) need during its photoperiod but also sunlight prediction and variable electricity pricing in our model. We use Markov chains to model sunlight irradiance and predict it during the day. By taking sunlight prediction information into account, we avoid supplying more light than the crop requires. Therefore, our lighting strategy prepares sufficient light for plant growth while minimizing electricity cost during the day. We propose an algorithm to find optimal supplemental lighting and evaluate its performance through exhaustive simulation studies using a whole year of weather data and compare it to a heuristic method, which aims to supply a fixed photosynthetic photon flux density (PPFD) to plants at each time step during the day. In addition to simulation studies, we also implemented the proposed lighting strategy in a research greenhouse in Athens, GA. Our prediction-based lighting approach shows (on average) over 45% electricity cost reduction compared to the heuristic method throughout the entire year.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉书竹完成签到,获得积分10
1秒前
advance发布了新的文献求助10
1秒前
四等一缺火龙果完成签到,获得积分10
1秒前
2秒前
2秒前
morena发布了新的文献求助10
2秒前
xmz完成签到,获得积分10
2秒前
3秒前
HUOZHUANGCHAO完成签到,获得积分10
3秒前
3秒前
3秒前
搜集达人应助lili采纳,获得10
4秒前
Liens发布了新的文献求助10
4秒前
阿珂发布了新的文献求助10
5秒前
5秒前
6秒前
ronnie发布了新的文献求助10
7秒前
左右完成签到,获得积分10
7秒前
ZuoqiHe完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
lxn发布了新的文献求助10
9秒前
不要加糖发布了新的文献求助10
9秒前
ZHANGJUN发布了新的文献求助10
9秒前
LLR发布了新的文献求助10
10秒前
Naonaoo发布了新的文献求助10
10秒前
10秒前
放倒巨大豆蔓完成签到 ,获得积分10
11秒前
12秒前
KX2024完成签到,获得积分10
13秒前
沉静向松发布了新的文献求助10
13秒前
哲痞子完成签到,获得积分10
13秒前
CodeCraft应助daoketuo采纳,获得10
13秒前
留胡子的夏柳完成签到,获得积分20
14秒前
wkc完成签到,获得积分10
15秒前
16秒前
霸气的匕完成签到,获得积分10
16秒前
西瓜宝宝完成签到,获得积分10
16秒前
Cassie完成签到,获得积分10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610445
求助须知:如何正确求助?哪些是违规求助? 4694923
关于积分的说明 14885144
捐赠科研通 4722453
什么是DOI,文献DOI怎么找? 2545155
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473063