Optimal lighting control in greenhouse by incorporating sunlight prediction

阳光 温室 环境科学 人造光 控制(管理) 计算机科学 农业工程 工程类 人工智能 照度 光学 物理 生物 园艺
作者
Sahand Mosharafian,Shirin Afzali,Geoffrey M. Weaver,Marc W. van Iersel,Javad Mohammadpour Velni
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:188: 106300-106300 被引量:20
标识
DOI:10.1016/j.compag.2021.106300
摘要

• Developed a sunlight prediction method based on a time-variant Markov model. • Devised an optimal prediction-based supplemental lighting method in greenhouses. • Minimized the lighting cost by formulating the underlying problem as a constrained convex optimization problem; • Showed supplemental lighting electricity cost saving of up to 45% during a year. Supplemental lighting is an effective means for increasing greenhouse productivity. Recently, the use of light-emitting diodes (LEDs), capable of precise and quick dimmability, has increased in greenhouses. However, electricity cost of lighting can be significant, and hence, it is necessary to find optimal lighting strategies to minimize electrical lighting cost. In this paper, we model supplemental lighting in the greenhouses equipped with LEDs as a constrained optimization problem, and we aim to minimize electricity cost of supplemental lighting. We consider not only plant daily light integral (DLI) need during its photoperiod but also sunlight prediction and variable electricity pricing in our model. We use Markov chains to model sunlight irradiance and predict it during the day. By taking sunlight prediction information into account, we avoid supplying more light than the crop requires. Therefore, our lighting strategy prepares sufficient light for plant growth while minimizing electricity cost during the day. We propose an algorithm to find optimal supplemental lighting and evaluate its performance through exhaustive simulation studies using a whole year of weather data and compare it to a heuristic method, which aims to supply a fixed photosynthetic photon flux density (PPFD) to plants at each time step during the day. In addition to simulation studies, we also implemented the proposed lighting strategy in a research greenhouse in Athens, GA. Our prediction-based lighting approach shows (on average) over 45% electricity cost reduction compared to the heuristic method throughout the entire year.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小月顺利毕业版完成签到,获得积分10
1秒前
2秒前
whb666完成签到,获得积分10
2秒前
年糕111发布了新的文献求助10
2秒前
3秒前
dorken完成签到,获得积分10
3秒前
hnagd完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
充电宝应助哎哟大侠采纳,获得10
4秒前
dorken发布了新的文献求助10
5秒前
艾玛应助年糕111采纳,获得10
6秒前
6秒前
求助人员发布了新的文献求助10
6秒前
6秒前
时光机带哥走完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
甜筒完成签到,获得积分10
8秒前
我滴个完成签到,获得积分10
9秒前
江淮左发布了新的文献求助10
9秒前
求助人员发布了新的文献求助10
11秒前
虾啊发布了新的文献求助20
11秒前
11秒前
11秒前
爆米花应助小爪冰凉采纳,获得10
11秒前
一只鲨呱完成签到 ,获得积分10
11秒前
石榴脆莆发布了新的文献求助10
12秒前
英勇冰蓝发布了新的文献求助10
13秒前
陈新关注了科研通微信公众号
13秒前
13秒前
13秒前
歪歪唧唧完成签到,获得积分10
13秒前
追逐完成签到 ,获得积分10
14秒前
真皮老板完成签到,获得积分10
16秒前
lu发布了新的文献求助10
16秒前
李玉博发布了新的文献求助10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795