Optimal lighting control in greenhouse by incorporating sunlight prediction

阳光 温室 环境科学 人造光 控制(管理) 计算机科学 农业工程 工程类 人工智能 照度 光学 物理 生物 园艺
作者
Sahand Mosharafian,Shirin Afzali,Geoffrey M. Weaver,Marc W. van Iersel,Javad Mohammadpour Velni
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:188: 106300-106300 被引量:20
标识
DOI:10.1016/j.compag.2021.106300
摘要

• Developed a sunlight prediction method based on a time-variant Markov model. • Devised an optimal prediction-based supplemental lighting method in greenhouses. • Minimized the lighting cost by formulating the underlying problem as a constrained convex optimization problem; • Showed supplemental lighting electricity cost saving of up to 45% during a year. Supplemental lighting is an effective means for increasing greenhouse productivity. Recently, the use of light-emitting diodes (LEDs), capable of precise and quick dimmability, has increased in greenhouses. However, electricity cost of lighting can be significant, and hence, it is necessary to find optimal lighting strategies to minimize electrical lighting cost. In this paper, we model supplemental lighting in the greenhouses equipped with LEDs as a constrained optimization problem, and we aim to minimize electricity cost of supplemental lighting. We consider not only plant daily light integral (DLI) need during its photoperiod but also sunlight prediction and variable electricity pricing in our model. We use Markov chains to model sunlight irradiance and predict it during the day. By taking sunlight prediction information into account, we avoid supplying more light than the crop requires. Therefore, our lighting strategy prepares sufficient light for plant growth while minimizing electricity cost during the day. We propose an algorithm to find optimal supplemental lighting and evaluate its performance through exhaustive simulation studies using a whole year of weather data and compare it to a heuristic method, which aims to supply a fixed photosynthetic photon flux density (PPFD) to plants at each time step during the day. In addition to simulation studies, we also implemented the proposed lighting strategy in a research greenhouse in Athens, GA. Our prediction-based lighting approach shows (on average) over 45% electricity cost reduction compared to the heuristic method throughout the entire year.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孔wj完成签到,获得积分10
2秒前
标致的方盒完成签到,获得积分10
3秒前
研友_8K2QJZ完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
3秒前
樱桃完成签到,获得积分10
3秒前
llll完成签到 ,获得积分0
3秒前
满意草丛完成签到,获得积分10
4秒前
STAR发布了新的文献求助10
4秒前
十七驳回了AN应助
4秒前
张鹤馨完成签到 ,获得积分10
4秒前
二米完成签到,获得积分10
4秒前
优雅的老姆完成签到,获得积分10
5秒前
怪杰完成签到,获得积分10
5秒前
6秒前
满意草丛发布了新的文献求助10
6秒前
小莨应助zjf采纳,获得30
6秒前
8秒前
8秒前
9秒前
ss完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助30
10秒前
十一完成签到,获得积分10
10秒前
麦客完成签到,获得积分10
10秒前
10秒前
妩媚的海应助Jimmy Ko采纳,获得10
11秒前
WangXinkui完成签到,获得积分10
12秒前
林夕发布了新的文献求助10
13秒前
Fading00完成签到,获得积分10
13秒前
13秒前
15秒前
Owen应助阔达的非笑采纳,获得10
15秒前
敢敢发布了新的文献求助10
15秒前
梅子酒发布了新的文献求助10
16秒前
稳重的蛟凤应助yao采纳,获得20
16秒前
18秒前
Clara完成签到,获得积分10
18秒前
ymh完成签到,获得积分10
18秒前
jing完成签到,获得积分10
18秒前
徐翩跹发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733391
求助须知:如何正确求助?哪些是违规求助? 5348377
关于积分的说明 15323747
捐赠科研通 4878502
什么是DOI,文献DOI怎么找? 2621247
邀请新用户注册赠送积分活动 1570363
关于科研通互助平台的介绍 1527280