Optimal lighting control in greenhouse by incorporating sunlight prediction

阳光 温室 环境科学 人造光 控制(管理) 计算机科学 农业工程 工程类 人工智能 照度 光学 物理 生物 园艺
作者
Sahand Mosharafian,Shirin Afzali,Geoffrey M. Weaver,Marc W. van Iersel,Javad Mohammadpour Velni
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:188: 106300-106300 被引量:20
标识
DOI:10.1016/j.compag.2021.106300
摘要

• Developed a sunlight prediction method based on a time-variant Markov model. • Devised an optimal prediction-based supplemental lighting method in greenhouses. • Minimized the lighting cost by formulating the underlying problem as a constrained convex optimization problem; • Showed supplemental lighting electricity cost saving of up to 45% during a year. Supplemental lighting is an effective means for increasing greenhouse productivity. Recently, the use of light-emitting diodes (LEDs), capable of precise and quick dimmability, has increased in greenhouses. However, electricity cost of lighting can be significant, and hence, it is necessary to find optimal lighting strategies to minimize electrical lighting cost. In this paper, we model supplemental lighting in the greenhouses equipped with LEDs as a constrained optimization problem, and we aim to minimize electricity cost of supplemental lighting. We consider not only plant daily light integral (DLI) need during its photoperiod but also sunlight prediction and variable electricity pricing in our model. We use Markov chains to model sunlight irradiance and predict it during the day. By taking sunlight prediction information into account, we avoid supplying more light than the crop requires. Therefore, our lighting strategy prepares sufficient light for plant growth while minimizing electricity cost during the day. We propose an algorithm to find optimal supplemental lighting and evaluate its performance through exhaustive simulation studies using a whole year of weather data and compare it to a heuristic method, which aims to supply a fixed photosynthetic photon flux density (PPFD) to plants at each time step during the day. In addition to simulation studies, we also implemented the proposed lighting strategy in a research greenhouse in Athens, GA. Our prediction-based lighting approach shows (on average) over 45% electricity cost reduction compared to the heuristic method throughout the entire year.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悦耳指甲油完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
刚刚
科研通AI2S应助大胆诗云采纳,获得10
1秒前
Owen应助诺克萨斯采纳,获得10
2秒前
2秒前
Hello应助冷艳的纸鹤采纳,获得10
2秒前
2秒前
我是老大应助Arsenel采纳,获得10
2秒前
hi_traffic完成签到,获得积分10
3秒前
大可发布了新的文献求助10
3秒前
4秒前
wzc发布了新的文献求助10
4秒前
酷波er应助zxd采纳,获得10
4秒前
5秒前
future发布了新的文献求助10
5秒前
杭秋寒发布了新的文献求助10
5秒前
6秒前
eznesug完成签到,获得积分10
6秒前
香蕉觅云应助陈品琪采纳,获得10
7秒前
7秒前
7秒前
zzuzll完成签到,获得积分10
8秒前
LaTeXer应助1111111采纳,获得30
8秒前
飘逸焱完成签到 ,获得积分10
8秒前
棋士应助1111111采纳,获得10
8秒前
CodeCraft应助1111111采纳,获得10
9秒前
星辰大海应助无语的大门采纳,获得10
9秒前
完美世界应助冷艳的纸鹤采纳,获得10
9秒前
momo完成签到,获得积分10
9秒前
10秒前
orixero应助祥辉NCU采纳,获得30
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
Zhi发布了新的文献求助10
12秒前
David完成签到 ,获得积分10
12秒前
体贴鹰完成签到 ,获得积分10
12秒前
13秒前
JeremyYuan发布了新的文献求助30
13秒前
HOAN应助林青青采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548