热解
热解炭
过程(计算)
生物量(生态学)
随机森林
生物能源
生物系统
环境科学
工艺工程
化学
材料科学
产量(工程)
支持向量机
制浆造纸工业
计算机科学
化学工程
生物燃料
人工智能
废物管理
工程类
农学
复合材料
操作系统
生物
作者
Qinghui Tang,Yingquan Chen,Haiping Yang,Ming Liu,Haoyu Xiao,Shurong Wang,Hanping Chen,Salman Raza Naqvi
标识
DOI:10.1016/j.biortech.2021.125581
摘要
Abstract This study aimed to utilize machine learning algorithems combined with feature reduction for predicting pyrolytic gas yield and compositions based on pyrolysis conditions and biomass characteristics. To this end, random forest (RF) and support vector machine (SVM) was introduced and compared. The results suggested that six features were adequate to accurately forecast (R2 > 0.85, RMSE
科研通智能强力驱动
Strongly Powered by AbleSci AI