In this paper, to determine the impact of carbon fiber orientation and interweaving on electromagnetic interference (EMI) shielding behaviors, anisotropic and isotropic samples were developed by conductive/dielectric weaving of spatially distributed carbon fiber and glass fiber. Effortless and cost-effective, the electromagnetic shielding efficiency (SE) was up to 42 dB and the SE/thickness) was 41 dB/mm, which had apparent polarization selection characteristics. In addition, the angle (θ) sensitivity for the SE in transverse electric and transverse magnetic polarization modes was given in detail. SE was generally proportional to θ. Moreover, the fingerprint-like radar chart of anisotropic carbon hybrid woven fabrics in the X-band was performed, which makes polarization selection characteristics more intuitive. This paper presented an easy and effective route for assembling hybrid carbon fiber fabrics with high EMI shielding performance, which offers a clear perspective on the simulation and study of carbon fiber electromagnetic properties.