Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem

强化学习 计算机科学 马尔可夫决策过程 数学优化 调度(生产过程) 人工智能 可扩展性 作业车间调度 地铁列车时刻表 背包问题 马尔可夫过程 算法 数学 统计 数据库 操作系统
作者
Luona Wei,Yuning Chen,Ming Chen,Yingwu Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:110: 107607-107607 被引量:79
标识
DOI:10.1016/j.asoc.2021.107607
摘要

The agile earth observation satellite scheduling problem (AEOSSP) consists of selecting and scheduling a number of tasks from a set of user requests in order to optimize one or multiple criteria. In this paper, we consider a multi-objective version of AEOSSP (called MO-AEOSSP) where the failure rate and the timeliness of scheduled requests are optimized simultaneously. Due to its NP-hardness, traditional iterative problem-tailored heuristic methods are sensitive to problem instances and require massive computational overhead. We thus propose a deep reinforcement learning and parameter transfer based approach (RLPT) to tackle the MO-AEOSSP in a non-iterative manner. RLPT first decomposes the MO-AEOSSP into a number of scalarized sub-problems by a weight sum approach where each sub-problem can be formulated as a Markov Decision Process (MDP). RLPT then applies an encoder–decoder structure neural network (NN) trained by a deep reinforcement learning procedure to producing a high-quality schedule for each sub-problem. The resulting schedules of all scalarized sub-problems form an approximate pareto front for the MO-AEOSSP. Once a NN of a subproblem is trained, RLPT applies a parameter transfer strategy to reducing the training expenses for its neighboring sub-problems. Experimental results on a large set of randomly generated instances show that RLPT outperforms three classical multi-objective evolutionary algorithms (MOEAs) in terms of solution quality, solution distribution and computational efficiency. Results on various-size instances also show that RLPT is highly general and scalable. To the best of our knowledge, this study is the first attempt that applies deep reinforcement learning to a satellite scheduling problem considering multiple objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栀子茉莉完成签到,获得积分10
刚刚
跳跃的冷卉完成签到 ,获得积分10
1秒前
isaac217完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
zdesfsfa完成签到,获得积分10
2秒前
搜集达人应助lily采纳,获得10
2秒前
清晨完成签到 ,获得积分10
2秒前
抵澳报了完成签到,获得积分0
2秒前
冰山一脚尖完成签到,获得积分10
3秒前
xiyueQAQ关注了科研通微信公众号
3秒前
jason0023完成签到,获得积分10
3秒前
AJIJDKDN完成签到,获得积分10
3秒前
3秒前
3秒前
敬之发布了新的文献求助10
4秒前
标致幻竹完成签到,获得积分10
4秒前
勤奋帅帅完成签到,获得积分10
5秒前
苏silence发布了新的文献求助80
5秒前
5秒前
大饼完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
rinki完成签到,获得积分10
6秒前
7秒前
7秒前
冷茗完成签到,获得积分10
7秒前
8秒前
张垚发布了新的文献求助10
8秒前
梅耀寰发布了新的文献求助10
8秒前
靓丽幻梅完成签到,获得积分10
8秒前
研友_VZG7GZ应助nn采纳,获得10
8秒前
沉默南露发布了新的文献求助10
8秒前
郭露露完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017