Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem

强化学习 计算机科学 马尔可夫决策过程 数学优化 调度(生产过程) 人工智能 可扩展性 作业车间调度 地铁列车时刻表 背包问题 马尔可夫过程 算法 数学 数据库 统计 操作系统
作者
Luona Wei,Yuning Chen,Ming Chen,Yingwu Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:110: 107607-107607 被引量:51
标识
DOI:10.1016/j.asoc.2021.107607
摘要

The agile earth observation satellite scheduling problem (AEOSSP) consists of selecting and scheduling a number of tasks from a set of user requests in order to optimize one or multiple criteria. In this paper, we consider a multi-objective version of AEOSSP (called MO-AEOSSP) where the failure rate and the timeliness of scheduled requests are optimized simultaneously. Due to its NP-hardness, traditional iterative problem-tailored heuristic methods are sensitive to problem instances and require massive computational overhead. We thus propose a deep reinforcement learning and parameter transfer based approach (RLPT) to tackle the MO-AEOSSP in a non-iterative manner. RLPT first decomposes the MO-AEOSSP into a number of scalarized sub-problems by a weight sum approach where each sub-problem can be formulated as a Markov Decision Process (MDP). RLPT then applies an encoder–decoder structure neural network (NN) trained by a deep reinforcement learning procedure to producing a high-quality schedule for each sub-problem. The resulting schedules of all scalarized sub-problems form an approximate pareto front for the MO-AEOSSP. Once a NN of a subproblem is trained, RLPT applies a parameter transfer strategy to reducing the training expenses for its neighboring sub-problems. Experimental results on a large set of randomly generated instances show that RLPT outperforms three classical multi-objective evolutionary algorithms (MOEAs) in terms of solution quality, solution distribution and computational efficiency. Results on various-size instances also show that RLPT is highly general and scalable. To the best of our knowledge, this study is the first attempt that applies deep reinforcement learning to a satellite scheduling problem considering multiple objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蟋蟀狂舞发布了新的文献求助10
2秒前
shelley完成签到,获得积分10
5秒前
冷艳小刺猬完成签到 ,获得积分10
6秒前
8秒前
搜集达人应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Hello应助科研通管家采纳,获得10
11秒前
12秒前
700w完成签到 ,获得积分10
13秒前
寂寞的诗云完成签到,获得积分10
13秒前
scfsl完成签到,获得积分10
13秒前
14秒前
幸福大白发布了新的文献求助10
14秒前
sijin1216完成签到,获得积分10
14秒前
小高发布了新的文献求助10
15秒前
歪比巴卜发布了新的文献求助10
16秒前
16秒前
17秒前
OKOK发布了新的文献求助10
17秒前
内向忆南发布了新的文献求助30
21秒前
22秒前
NexusExplorer应助花花采纳,获得10
23秒前
我是老大应助OKOK采纳,获得10
23秒前
deallyxyz应助goofs采纳,获得200
24秒前
25秒前
25秒前
木偶完成签到 ,获得积分10
26秒前
twob发布了新的文献求助10
26秒前
27秒前
泡泡糖发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702