Cyclicity of real estate-related trends: topic modelling and sentiment analysis on German real estate news

房地产 报纸 德国的 独创性 内涵 趋势分析 业务 经济 政治学 广告 计算机科学 地理 财务 语言学 哲学 法学 考古 机器学习 创造力
作者
Franziska Ploessl,Tobias Just,Lino Wehrheim
出处
期刊:Journal of European Real Estate Research 卷期号:14 (3): 381-400 被引量:2
标识
DOI:10.1108/jerer-12-2020-0059
摘要

Purpose The purpose of this paper is to identify and analyse the news coverage and sentiment of real estate-related trends in Germany. Trends are considered as being stable and long-term. If the news coverage and sentiment of trends underlie cyclicity, this could impact investors’ behaviour. For instance, in the case of increased reporting on sustainability issues, investors may be inclined to invest more in sustainable buildings, assuming that this is of growing importance to their clients. Hence, investors could expect higher returns when a trend topic goes viral. Design/methodology/approach With the help of topic modelling, incorporating seed words partially generated via word embeddings, almost 170,000 newspaper articles published between 1999 and 2019 by a major German real estate news provider are analysed and assigned to real estate-related trends. Through applying a dictionary-based approach, this dataset is then analysed based on whether the tone of the news coverage of a specific trend is subject to change. Findings The articles concerning urbanisation and globalisation account for the largest shares of reporting. However, the shares are subject to change over time, both in terms of news coverage and sentiment. In particular, the topic of sustainability illustrates a clearly increasing trend with cyclical movements throughout the examined period. Overall, the digitalisation trend has a highly positive connotation within the analysed articles, while regulation displays the most negative sentiment. Originality/value To the best of the authors’ knowledge, this is the first application to explore German real estate newspaper articles regarding the methodologies of word representation and seeded topic modelling. The integration of topic modelling into real estate analysis provides a means through which to extract information in a standardised and replicable way. The methodology can be applied to several further fields like analysing market reports, company statements or social media comments on real estate topics. Finally, this is also the first study to measure the cyclicity of real estate-related trends by means of textual analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王秋婷发布了新的文献求助10
3秒前
3秒前
脑洞疼应助JoaquinH采纳,获得10
4秒前
zs完成签到 ,获得积分10
5秒前
newfat应助Tree_采纳,获得30
5秒前
5秒前
6秒前
6秒前
6秒前
123发布了新的文献求助10
8秒前
36456657应助一二三木偶人采纳,获得10
9秒前
学术混子发布了新的文献求助10
11秒前
11秒前
炙热笑旋发布了新的文献求助10
12秒前
乔治哇发布了新的文献求助10
12秒前
12秒前
高屋建瓴完成签到,获得积分10
13秒前
Ava应助qq采纳,获得10
15秒前
byzhao19完成签到,获得积分10
15秒前
18秒前
20秒前
老北京发布了新的文献求助10
22秒前
22秒前
23秒前
悦耳的柠檬完成签到,获得积分10
26秒前
una完成签到 ,获得积分10
26秒前
杨柳依依发布了新的文献求助10
26秒前
3agemo发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
juana应助小哈采纳,获得10
34秒前
老北京发布了新的文献求助10
34秒前
过时的寄真完成签到,获得积分10
35秒前
Neuro_dan完成签到,获得积分10
36秒前
JoaquinH发布了新的文献求助10
36秒前
奥雷里亚诺完成签到 ,获得积分10
36秒前
魁梧的问雁完成签到,获得积分10
37秒前
3agemo完成签到,获得积分10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357888
求助须知:如何正确求助?哪些是违规求助? 2981150
关于积分的说明 8698037
捐赠科研通 2662799
什么是DOI,文献DOI怎么找? 1458085
科研通“疑难数据库(出版商)”最低求助积分说明 674984
邀请新用户注册赠送积分活动 666009