亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mitochondrial compartmentalization: emerging themes in structure and function

分区(防火) 生物 线粒体 细胞生物学 功能(生物学) 计算生物学 进化生物学 生物化学
作者
Joseph C. Iovine,Steven M. Claypool,Nathan N. Alder
出处
期刊:Trends in Biochemical Sciences [Elsevier BV]
卷期号:46 (11): 902-917 被引量:45
标识
DOI:10.1016/j.tibs.2021.06.003
摘要

Mitochondria contain two membranes that partition the organelles into compositionally and functionally distinct subcompartments that are defined by a topologically complex ultrastructure. In addition to their morphological complexity, mitochondria are pleomorphic, undergoing morphogenesis events with an extent and frequency that is only now becoming fully appreciated. The protein complexes that define inner membrane morphology form an interactive network with lipid interactions, and new insights are illuminating how they establish and regulate compartmentalization. The general determinants of compartmentalization, as well as the factors that govern protein and lipid distribution, have recently been identified. Novel research on the functional relevance of compartmentalization has highlighted a key role of regulated cristae subcompartment structure in bioenergetics and in human diseases. Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases. Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases. crescent-shaped domain that interacts with curved membrane surfaces to both promote and detect local membrane curvatures, named after the BIN/Amphiphysin/Rvs proteins in which they are found. attribute of a semipermeable barrier that allows the selective flux of ions down their electrochemical gradients, typically energetically coupled to another process. difference in proton electrochemical potential (Δμ~H+). The potential across the CM of actively respiring mitochondria has a major contribution from the electric potential (ΔΨm ~150 mV, matrix negative) and a minor contribution from the proton concentration difference (ΔpH ~1 unit, matrix alkaline). ABC transporters that utilize the energy provided by ATP hydrolysis to move specific phospholipids against their gradient from the outer to the inner leaflet (flippase) or from the inner to the outer leaflet (floppase). Together, they help generate lipid asymmetry in membranes. a network of physically interacting molecules defining a specific biochemical function or process. controlled process of cell death initiated by proapoptotic effectors (e.g., Bax/Bak) that interact with mitochondria to release factors (e.g., cyt c) that propagate a proteolytic cascade. regions of close apposition between two membranes, generally comprising interacting protein complexes, that facilitate signaling and the passage of small molecules. Such sites can be interorganellar, mediating connections that are homotypic (between the same organelles) or heterotypic (between different organelles). They can also exist between membranes of a single organelle. physical bending of a biomembrane to produce positively (convex) and negatively (concave) curved surfaces. displaying plasticity in structure and size. Ca2+-dependent transporters that equilibrate phospholipids between membrane leaflets. Unlike flippases and floppases, scramblases do not need an external energy source to transport lipids. protein family named after primary members (stomatin, prohibitin, flotillin, and HflK/C), which commonly associate on membranes to form lipid raft microdomains that recruit specific protein complexes. assembly of the respiratory complexes (CI, CIII, and CIV) into supramolecular structures. This solid-state arrangement likely enhances metabolic efficiency compared with a fluid-state model in which individual complexes are connected by freely diffusing electron carriers. the structure of cellular or subcellular objects that requires higher magnification than standard optical microscopy, typically observable by EM or super-resolution microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛怀锐完成签到 ,获得积分10
1秒前
知足的憨人*-*完成签到,获得积分10
2秒前
夏宇航完成签到,获得积分10
8秒前
深情安青应助西格玛采纳,获得30
10秒前
yyyalles发布了新的文献求助10
12秒前
21秒前
23秒前
28秒前
32秒前
森sen完成签到 ,获得积分10
37秒前
夏宇航关注了科研通微信公众号
38秒前
锦慜完成签到 ,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
42秒前
大模型应助科研通管家采纳,获得30
42秒前
42秒前
Milton_z完成签到 ,获得积分0
45秒前
劳健龙完成签到 ,获得积分10
46秒前
是啊今夕空闲完成签到,获得积分10
52秒前
夏宇航发布了新的文献求助10
54秒前
无灾无难到公卿完成签到,获得积分10
57秒前
马路完成签到 ,获得积分10
1分钟前
1分钟前
shuiyu完成签到,获得积分10
1分钟前
Dritsw应助Zirong采纳,获得10
1分钟前
wykion完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
DoctorG发布了新的文献求助10
1分钟前
激情的白枫完成签到 ,获得积分10
1分钟前
酷波er应助DoctorG采纳,获得10
1分钟前
坦率完成签到,获得积分10
1分钟前
1分钟前
充电宝应助7_采纳,获得10
1分钟前
1分钟前
1分钟前
lengkuboy发布了新的文献求助10
2分钟前
111111完成签到,获得积分10
2分钟前
DrW1111发布了新的文献求助10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965570
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155342
捐赠科研通 3245324
什么是DOI,文献DOI怎么找? 1792823
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176