Mitochondrial compartmentalization: emerging themes in structure and function

分区(防火) 生物 线粒体 细胞生物学 功能(生物学) 计算生物学 进化生物学 生物化学
作者
Joseph C. Iovine,Steven M. Claypool,Nathan N. Alder
出处
期刊:Trends in Biochemical Sciences [Elsevier]
卷期号:46 (11): 902-917 被引量:45
标识
DOI:10.1016/j.tibs.2021.06.003
摘要

Mitochondria contain two membranes that partition the organelles into compositionally and functionally distinct subcompartments that are defined by a topologically complex ultrastructure. In addition to their morphological complexity, mitochondria are pleomorphic, undergoing morphogenesis events with an extent and frequency that is only now becoming fully appreciated. The protein complexes that define inner membrane morphology form an interactive network with lipid interactions, and new insights are illuminating how they establish and regulate compartmentalization. The general determinants of compartmentalization, as well as the factors that govern protein and lipid distribution, have recently been identified. Novel research on the functional relevance of compartmentalization has highlighted a key role of regulated cristae subcompartment structure in bioenergetics and in human diseases. Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases. Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases. crescent-shaped domain that interacts with curved membrane surfaces to both promote and detect local membrane curvatures, named after the BIN/Amphiphysin/Rvs proteins in which they are found. attribute of a semipermeable barrier that allows the selective flux of ions down their electrochemical gradients, typically energetically coupled to another process. difference in proton electrochemical potential (Δμ~H+). The potential across the CM of actively respiring mitochondria has a major contribution from the electric potential (ΔΨm ~150 mV, matrix negative) and a minor contribution from the proton concentration difference (ΔpH ~1 unit, matrix alkaline). ABC transporters that utilize the energy provided by ATP hydrolysis to move specific phospholipids against their gradient from the outer to the inner leaflet (flippase) or from the inner to the outer leaflet (floppase). Together, they help generate lipid asymmetry in membranes. a network of physically interacting molecules defining a specific biochemical function or process. controlled process of cell death initiated by proapoptotic effectors (e.g., Bax/Bak) that interact with mitochondria to release factors (e.g., cyt c) that propagate a proteolytic cascade. regions of close apposition between two membranes, generally comprising interacting protein complexes, that facilitate signaling and the passage of small molecules. Such sites can be interorganellar, mediating connections that are homotypic (between the same organelles) or heterotypic (between different organelles). They can also exist between membranes of a single organelle. physical bending of a biomembrane to produce positively (convex) and negatively (concave) curved surfaces. displaying plasticity in structure and size. Ca2+-dependent transporters that equilibrate phospholipids between membrane leaflets. Unlike flippases and floppases, scramblases do not need an external energy source to transport lipids. protein family named after primary members (stomatin, prohibitin, flotillin, and HflK/C), which commonly associate on membranes to form lipid raft microdomains that recruit specific protein complexes. assembly of the respiratory complexes (CI, CIII, and CIV) into supramolecular structures. This solid-state arrangement likely enhances metabolic efficiency compared with a fluid-state model in which individual complexes are connected by freely diffusing electron carriers. the structure of cellular or subcellular objects that requires higher magnification than standard optical microscopy, typically observable by EM or super-resolution microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KWang完成签到,获得积分10
1秒前
lalune发布了新的文献求助10
2秒前
Jack完成签到,获得积分10
2秒前
丁茸茸完成签到,获得积分10
2秒前
Luna完成签到 ,获得积分10
2秒前
呆萌安萱发布了新的文献求助10
3秒前
XY完成签到,获得积分10
3秒前
laissez_fairy完成签到,获得积分10
4秒前
4秒前
阿九发布了新的文献求助10
4秒前
小野狼完成签到,获得积分10
4秒前
慕青应助迷人幻波采纳,获得10
4秒前
唯一完成签到,获得积分10
6秒前
7秒前
8秒前
mml完成签到,获得积分10
9秒前
卢本伟牛逼完成签到,获得积分10
10秒前
桃子完成签到 ,获得积分10
11秒前
a1423072381完成签到,获得积分10
11秒前
12秒前
qqqyy发布了新的文献求助10
12秒前
小琪猪发布了新的文献求助10
13秒前
JamesPei应助hahahah采纳,获得10
14秒前
ste11ar发布了新的文献求助10
15秒前
16秒前
16秒前
甜甜的不二完成签到,获得积分10
17秒前
呆萌安萱完成签到,获得积分10
18秒前
18秒前
qqqyy完成签到,获得积分10
18秒前
18秒前
xrkxrk完成签到 ,获得积分10
19秒前
wbh完成签到 ,获得积分10
19秒前
EMMACao完成签到,获得积分10
20秒前
Willow完成签到,获得积分10
20秒前
liyuxuan发布了新的文献求助10
21秒前
田様应助橙花采纳,获得80
21秒前
guantlv发布了新的文献求助10
22秒前
Hcw0525发布了新的文献求助10
22秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023