Infrared spectroscopy combined with random forest to determine tylosin residues in powdered milk

泰乐菌素 化学 傅里叶变换红外光谱 污染 食品科学 生物 抗生素 生物化学 物理 量子力学 生态学
作者
Alexandre Gomes Marques de Freitas,Lucas Almir Cavalcante Minho,Bárbara Elizabeth Alves de Magalhães,Walter Nei Lopes dos Santos,Leandro Soares Santos,Sérgio Augusto de Albuquerque Fernandes
出处
期刊:Food Chemistry [Elsevier]
卷期号:365: 130477-130477 被引量:36
标识
DOI:10.1016/j.foodchem.2021.130477
摘要

• Random Forest and Boruta showed suitability for calibration purpose with FTIR data. • Absorption bands related to milk contamination were identified with Boruta algorithm. • FTIR and Random Forest allow analysis antibiotic residues directly in powdered milk. • The regression model showed good ability to predict tylosin concentration in milk. • The proposed methodology is non-destructive, fast, efficient and of low cost. The contamination of milk by antibiotic residues is a worldwide health and food safety problem. There is a need to develop new methods for the rapid determination of antibiotic residues in milk. A method has been developed for determining tylosin residues directly in powdered milk using Fourier Transformed Infrared spectroscopy (FTIR). Tylosin is a broad-spectrum macrolide antibiotic. The spectra obtained were submitted to chemometric analysis to obtain a prediction model for tylosin concentration in powdered milk. Using the Boruta algorithm, the absorption bands related to the milk contamination by the antibiotic were identified. Random forest was shown to be adequate for the prediction of tylosin residues in milk at low concentrations (≤ 100 μg L -1 ) and the prediction model generated showed high correlation and determination coefficients (greater than 0.95). The proposed methodology proved to be efficient for the investigation of antibiotic residues in powdered milk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nono完成签到,获得积分10
1秒前
火星上立果完成签到,获得积分10
2秒前
2秒前
庄佳美发布了新的文献求助10
3秒前
14关闭了14文献求助
4秒前
5秒前
5秒前
6秒前
背后寒烟完成签到 ,获得积分10
6秒前
斯文败类应助安静曼云采纳,获得10
6秒前
6秒前
7秒前
fhghhhjh发布了新的文献求助10
8秒前
8秒前
脑洞疼应助七qiqi采纳,获得10
9秒前
shekunxuan完成签到,获得积分10
10秒前
z7777777发布了新的文献求助10
10秒前
梦里潇湘完成签到,获得积分10
10秒前
科研顺顺顺完成签到,获得积分10
10秒前
勤奋的寒风完成签到,获得积分10
11秒前
planet发布了新的文献求助10
11秒前
大模型应助shekunxuan采纳,获得10
13秒前
14秒前
CodeCraft应助MOf采纳,获得10
14秒前
15秒前
柳瑞萍发布了新的文献求助10
17秒前
17秒前
17秒前
漂亮的哈密瓜完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
YangXi177完成签到 ,获得积分20
19秒前
英姑应助ontheway采纳,获得10
19秒前
zzzjh完成签到,获得积分10
19秒前
li发布了新的文献求助10
20秒前
来来发布了新的文献求助10
20秒前
科研通AI6应助热心的映冬采纳,获得20
20秒前
20秒前
科目三应助zjy采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643609
求助须知:如何正确求助?哪些是违规求助? 4761592
关于积分的说明 15021633
捐赠科研通 4801928
什么是DOI,文献DOI怎么找? 2567137
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484449