Infrared spectroscopy combined with random forest to determine tylosin residues in powdered milk

泰乐菌素 化学 傅里叶变换红外光谱 污染 食品科学 生物 抗生素 生物化学 物理 量子力学 生态学
作者
Alexandre Gomes Marques de Freitas,Lucas Almir Cavalcante Minho,Bárbara Elizabeth Alves de Magalhães,Walter Nei Lopes dos Santos,Leandro Soares Santos,Sérgio Augusto de Albuquerque Fernandes
出处
期刊:Food Chemistry [Elsevier]
卷期号:365: 130477-130477 被引量:36
标识
DOI:10.1016/j.foodchem.2021.130477
摘要

• Random Forest and Boruta showed suitability for calibration purpose with FTIR data. • Absorption bands related to milk contamination were identified with Boruta algorithm. • FTIR and Random Forest allow analysis antibiotic residues directly in powdered milk. • The regression model showed good ability to predict tylosin concentration in milk. • The proposed methodology is non-destructive, fast, efficient and of low cost. The contamination of milk by antibiotic residues is a worldwide health and food safety problem. There is a need to develop new methods for the rapid determination of antibiotic residues in milk. A method has been developed for determining tylosin residues directly in powdered milk using Fourier Transformed Infrared spectroscopy (FTIR). Tylosin is a broad-spectrum macrolide antibiotic. The spectra obtained were submitted to chemometric analysis to obtain a prediction model for tylosin concentration in powdered milk. Using the Boruta algorithm, the absorption bands related to the milk contamination by the antibiotic were identified. Random forest was shown to be adequate for the prediction of tylosin residues in milk at low concentrations (≤ 100 μg L -1 ) and the prediction model generated showed high correlation and determination coefficients (greater than 0.95). The proposed methodology proved to be efficient for the investigation of antibiotic residues in powdered milk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘玄德发布了新的文献求助10
刚刚
机智的凡梦完成签到,获得积分10
刚刚
LRR发布了新的文献求助10
刚刚
1秒前
Lin完成签到,获得积分10
1秒前
星星炒蛋完成签到,获得积分10
1秒前
张铭哲发布了新的文献求助10
1秒前
顾矜应助qqz采纳,获得10
2秒前
MY999完成签到,获得积分10
2秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
2秒前
2秒前
竹子发布了新的文献求助20
3秒前
3秒前
3秒前
共享精神应助hopeseason采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
liuchuck驳回了Ava应助
3秒前
嘿ha发布了新的文献求助10
4秒前
Tea233发布了新的文献求助10
4秒前
共享精神应助天气晴朗采纳,获得10
4秒前
5秒前
5秒前
无极微光应助哇哈哈哈采纳,获得20
6秒前
火山啊啊啊完成签到 ,获得积分10
6秒前
慕青应助刘国建郭菱香采纳,获得10
6秒前
tangyong发布了新的文献求助10
6秒前
荒年完成签到,获得积分10
6秒前
Hedy发布了新的文献求助10
6秒前
7秒前
雪白巨人完成签到,获得积分10
7秒前
7秒前
陶醉幻丝发布了新的文献求助10
7秒前
7秒前
CipherSage应助紧张的紫文采纳,获得10
7秒前
7秒前
7秒前
共享精神应助111采纳,获得10
8秒前
8秒前
pcr163应助bjcyqz采纳,获得150
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590