Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care

医学 急性肾损伤 肌酐 肾脏替代疗法 重症监护医学 阶段(地层学) 肾脏疾病 急诊医学 疾病严重程度 内科学 生物 古生物学
作者
Junzi Dong,Ting Feng,Binod Thapa-Chhetry,Byung Gu Cho,Tunu Shum,David Inwald,Christopher J. L. Newth,Vinay Vaidya
出处
期刊:Critical Care [BioMed Central]
卷期号:25 (1) 被引量:79
标识
DOI:10.1186/s13054-021-03724-0
摘要

Abstract Background Acute kidney injury (AKI) in pediatric critical care patients is diagnosed using elevated serum creatinine, which occurs only after kidney impairment. There are no treatments other than supportive care for AKI once it has developed, so it is important to identify patients at risk to prevent injury. This study develops a machine learning model to learn pre-disease patterns of physiological measurements and predict pediatric AKI up to 48 h earlier than the currently established diagnostic guidelines. Methods EHR data from 16,863 pediatric critical care patients between 1 month to 21 years of age from three independent institutions were used to develop a single machine learning model for early prediction of creatinine-based AKI using intelligently engineered predictors, such as creatinine rate of change, to automatically assess real-time AKI risk. The primary outcome is prediction of moderate to severe AKI (Stage 2/3), and secondary outcomes are prediction of any AKI (Stage 1/2/3) and requirement of renal replacement therapy (RRT). Predictions generate alerts allowing fast assessment and reduction of AKI risk, such as: “patient has 90% risk of developing AKI in the next 48 h” along with contextual information and suggested response such as “patient on aminoglycosides, suggest check level and review dose and indication”. Results The model was successful in predicting Stage 2/3 AKI prior to detection by conventional criteria with a median lead-time of 30 h at AUROC of 0.89. The model predicted 70% of subsequent RRT episodes, 58% of Stage 2/3 episodes, and 41% of any AKI episodes. The ratio of false to true alerts of any AKI episodes was approximately one-to-one (PPV 47%). Among patients predicted, 79% received potentially nephrotoxic medication after being identified by the model but before development of AKI. Conclusions As the first multi-center validated AKI prediction model for all pediatric critical care patients, the machine learning model described in this study accurately predicts moderate to severe AKI up to 48 h in advance of AKI onset. The model may improve outcome of pediatric AKI by providing early alerting and actionable feedback, potentially preventing or reducing AKI by implementing early measures such as medication adjustment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苏州小北发布了新的文献求助10
1秒前
1秒前
Aisha发布了新的文献求助10
2秒前
Hello应助xibei采纳,获得10
3秒前
Maxine完成签到,获得积分10
3秒前
田様应助你说你要干干干采纳,获得10
4秒前
4秒前
情怀应助Jke采纳,获得10
4秒前
4秒前
myyyyy发布了新的文献求助10
4秒前
5秒前
三余完成签到,获得积分10
5秒前
5秒前
泽泽发布了新的文献求助10
6秒前
6秒前
weishen完成签到,获得积分0
7秒前
LILI李发布了新的文献求助30
7秒前
ChiDaiOLD完成签到,获得积分10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
艾客科研完成签到,获得积分10
9秒前
李爱国应助科研欣路采纳,获得30
9秒前
10秒前
10秒前
冷裤de工头完成签到,获得积分20
11秒前
1234发布了新的文献求助10
11秒前
平常剑鬼发布了新的文献求助10
11秒前
12秒前
13秒前
乌啦啦发布了新的文献求助10
13秒前
14秒前
14秒前
CHEN发布了新的文献求助10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421