Identifying LncRNA-Encoded Short Peptides Using Optimized Hybrid Features and Ensemble Learning

随机森林 计算机科学 人工智能 机器学习 排名(信息检索) 降维 集成学习 特征(语言学) 情态动词 模式识别(心理学) 特征选择 语言学 哲学 化学 高分子化学
作者
Siyuan Zhao,Jun Meng,Qiang Kang,Yushi Luan
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2873-2881 被引量:4
标识
DOI:10.1109/tcbb.2021.3104288
摘要

Long non-coding RNA (lncRNA) contains short open reading frames (sORFs), and sORFs-encoded short peptides (SEPs) have become the focus of scientific studies due to their crucial role in life activities. The identification of SEPs is vital to further understanding their regulatory function. Bioinformatics methods can quickly identify SEPs to provide credible candidate sequences for verifying SEPs by biological experimenrts. However, there is a lack of methods for identifying SEPs directly. In this study, a machine learning method to identify SEPs of plant lncRNA (ISPL) is proposed. Hybrid features including sequence features and physicochemical features are extracted manually or adaptively to construct different modal features. In order to keep the stability of feature selection, the non-linear correction applied in Max-Relevance-Max-Distance (nocRD) feature selection method is proposed, which integrates multiple feature ranking results and uses the iterative random forest for different modal features dimensionality reduction. Classification models with different modal features are constructed, and their outputs are combined for ensemble classification. The experimental results show that the accuracy of ISPL is 89.86% percent on the independent test set, which will have important implications for further studies of functional genomic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助文献小聂采纳,获得10
刚刚
Ethan完成签到,获得积分10
刚刚
端庄棒棒糖完成签到,获得积分10
1秒前
可爱的函函应助tiezhu采纳,获得10
1秒前
1秒前
一一完成签到,获得积分10
1秒前
元宝团子完成签到,获得积分10
1秒前
hahage完成签到,获得积分10
1秒前
Lengbo完成签到,获得积分10
1秒前
li发布了新的文献求助10
2秒前
2秒前
板蓝根@发布了新的文献求助10
2秒前
cy123完成签到,获得积分20
2秒前
2秒前
奋斗静蕾完成签到,获得积分20
2秒前
ZCM发布了新的文献求助10
2秒前
Akim应助柏莉采纳,获得10
3秒前
3秒前
所所应助Lmj采纳,获得10
3秒前
布布完成签到,获得积分10
4秒前
领导范儿应助名副棋实采纳,获得10
4秒前
Wlin完成签到,获得积分10
4秒前
4秒前
kmkz发布了新的文献求助10
5秒前
lidada发布了新的文献求助100
5秒前
莫谷蓝完成签到,获得积分10
5秒前
5秒前
泡泡发布了新的文献求助10
6秒前
大力的宝川完成签到 ,获得积分10
6秒前
嫤姝完成签到,获得积分10
6秒前
9700发布了新的文献求助10
6秒前
zywzyw发布了新的文献求助10
6秒前
沈华炜完成签到,获得积分10
6秒前
7秒前
孙pc发布了新的文献求助30
7秒前
7秒前
善学以致用应助Wlin采纳,获得10
7秒前
琳琳完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
Ava应助奋斗静蕾采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997