Identifying LncRNA-Encoded Short Peptides Using Optimized Hybrid Features and Ensemble Learning

随机森林 计算机科学 人工智能 机器学习 排名(信息检索) 降维 集成学习 特征(语言学) 情态动词 模式识别(心理学) 特征选择 语言学 哲学 化学 高分子化学
作者
Siyuan Zhao,Jun Meng,Qiang Kang,Yushi Luan
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2873-2881 被引量:4
标识
DOI:10.1109/tcbb.2021.3104288
摘要

Long non-coding RNA (lncRNA) contains short open reading frames (sORFs), and sORFs-encoded short peptides (SEPs) have become the focus of scientific studies due to their crucial role in life activities. The identification of SEPs is vital to further understanding their regulatory function. Bioinformatics methods can quickly identify SEPs to provide credible candidate sequences for verifying SEPs by biological experimenrts. However, there is a lack of methods for identifying SEPs directly. In this study, a machine learning method to identify SEPs of plant lncRNA (ISPL) is proposed. Hybrid features including sequence features and physicochemical features are extracted manually or adaptively to construct different modal features. In order to keep the stability of feature selection, the non-linear correction applied in Max-Relevance-Max-Distance (nocRD) feature selection method is proposed, which integrates multiple feature ranking results and uses the iterative random forest for different modal features dimensionality reduction. Classification models with different modal features are constructed, and their outputs are combined for ensemble classification. The experimental results show that the accuracy of ISPL is 89.86% percent on the independent test set, which will have important implications for further studies of functional genomic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红丽阿妹完成签到,获得积分10
刚刚
Maths发布了新的文献求助10
1秒前
小蘑菇应助zheng采纳,获得10
1秒前
wenbin完成签到,获得积分10
2秒前
2秒前
机器猫发布了新的文献求助10
3秒前
5秒前
帅气一刀应助jjj采纳,获得10
6秒前
leoleo完成签到,获得积分10
7秒前
tingz发布了新的文献求助10
8秒前
机灵笑白发布了新的文献求助10
9秒前
苏苏苏发布了新的文献求助10
9秒前
126完成签到,获得积分10
11秒前
zhuyaowang发布了新的文献求助10
11秒前
15秒前
情怀应助栗栗栗子采纳,获得10
16秒前
dddd发布了新的文献求助10
16秒前
17秒前
yuyu发布了新的文献求助10
18秒前
朱钰琪完成签到,获得积分10
19秒前
1234发布了新的文献求助10
20秒前
21秒前
诸乘风发布了新的文献求助10
23秒前
23秒前
May应助朱钰琪采纳,获得20
24秒前
Lin发布了新的文献求助10
27秒前
xiaochuan发布了新的文献求助10
27秒前
27秒前
yuyu完成签到,获得积分20
28秒前
1234完成签到,获得积分20
28秒前
28秒前
细腻的宫二完成签到,获得积分10
29秒前
Maths完成签到,获得积分10
29秒前
billevans完成签到,获得积分10
31秒前
32秒前
虚心的大雄完成签到,获得积分10
33秒前
滴滴答答完成签到 ,获得积分10
33秒前
陈豆豆发布了新的文献求助10
33秒前
单薄的西装应助999采纳,获得10
34秒前
搞搞学术吧完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951098
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082428
捐赠科研通 3226957
什么是DOI,文献DOI怎么找? 1784092
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801069