摘要
Highlights Leaf nitrogen percentage in corn was estimated using various vegetation indices derived from UAVs. Eight machine learning methods were compared to find the most accurate model for nitrogen estimation. The most influential vegetation indices were determined for estimation of leaf nitrogen. Abstract . Nitrogen (N) is the most critical component of healthy plants. It has a significant impact on photosynthesis and plant reproduction. Physicochemical characteristics of plants such as leaf N content can be estimated spatially and temporally because of the latest developments in multispectral sensing technology and machine learning (ML) methods. The objective of this study was to use spectral data for leaf N estimation in corn to compare different ML models and find the best-fitted model. Moreover, the performance of vegetation indices (VIs) and spectral wavelengths were compared individually and collectively to determine if combinations of VIs substantially improved the results as compared to the original spectral data. This study was conducted at a Mississippi State University corn field that was divided into 16 plots with four different N treatments (0, 90, 180, and 270 kg ha-1). The bare soil pixels were removed from the multispectral images, and 26 VIs were calculated based on five spectral bands: blue, green, red, red-edge, and near-infrared (NIR). The 26 VIs and five spectral bands obtained from a red-edge multispectral sensor mounted on an unmanned aerial vehicle (UAV) were analyzed to develop ML models for leaf %N estimation of corn. The input variables used in these models had the most impact on chlorophyll and N content and high correlation with leaf N content. Eight ML algorithms (random forest, gradient boosting, support vector machine, multi-layer perceptron, ridge regression, lasso regression, and elastic net) were applied to three different categories of variables. The results show that gradient boosting and random forest were the best-fitted models to estimate leaf %N, with about an 80% coefficient of determination for the different categories of variables. Moreover, adding VIs to the spectral bands improved the results. The combination of SCCCI, NDRE, and red-edge had the largest coefficient of determination (R2) in comparison to the other categories of variables used to predict leaf %N content in corn. Keywords: Corn, Gradient boosting, Machine learning, Multispectral imagery, Nitrogen estimation, Random forest, UAV, Vegetation index.