亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of Machine Learning Methods for Leaf Nitrogen Estimation in Corn Using Multispectral UAV Images

多光谱图像 红边 氮气 植被(病理学) 数学 像素 遥感 多光谱模式识别 环境科学 高光谱成像 人工智能 计算机科学 化学 地理 有机化学 病理 医学
作者
Razieh Barzin,Hamid Kamangir,Ganesh C. Bora
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:64 (6): 2089-2101 被引量:8
标识
DOI:10.13031/trans.14305
摘要

Highlights Leaf nitrogen percentage in corn was estimated using various vegetation indices derived from UAVs. Eight machine learning methods were compared to find the most accurate model for nitrogen estimation. The most influential vegetation indices were determined for estimation of leaf nitrogen. Abstract . Nitrogen (N) is the most critical component of healthy plants. It has a significant impact on photosynthesis and plant reproduction. Physicochemical characteristics of plants such as leaf N content can be estimated spatially and temporally because of the latest developments in multispectral sensing technology and machine learning (ML) methods. The objective of this study was to use spectral data for leaf N estimation in corn to compare different ML models and find the best-fitted model. Moreover, the performance of vegetation indices (VIs) and spectral wavelengths were compared individually and collectively to determine if combinations of VIs substantially improved the results as compared to the original spectral data. This study was conducted at a Mississippi State University corn field that was divided into 16 plots with four different N treatments (0, 90, 180, and 270 kg ha-1). The bare soil pixels were removed from the multispectral images, and 26 VIs were calculated based on five spectral bands: blue, green, red, red-edge, and near-infrared (NIR). The 26 VIs and five spectral bands obtained from a red-edge multispectral sensor mounted on an unmanned aerial vehicle (UAV) were analyzed to develop ML models for leaf %N estimation of corn. The input variables used in these models had the most impact on chlorophyll and N content and high correlation with leaf N content. Eight ML algorithms (random forest, gradient boosting, support vector machine, multi-layer perceptron, ridge regression, lasso regression, and elastic net) were applied to three different categories of variables. The results show that gradient boosting and random forest were the best-fitted models to estimate leaf %N, with about an 80% coefficient of determination for the different categories of variables. Moreover, adding VIs to the spectral bands improved the results. The combination of SCCCI, NDRE, and red-edge had the largest coefficient of determination (R2) in comparison to the other categories of variables used to predict leaf %N content in corn. Keywords: Corn, Gradient boosting, Machine learning, Multispectral imagery, Nitrogen estimation, Random forest, UAV, Vegetation index.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耳与总完成签到,获得积分10
4秒前
Sandy完成签到,获得积分10
37秒前
科研通AI2S应助cc采纳,获得10
2分钟前
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
如意竺完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
LLL完成签到,获得积分10
5分钟前
jyy完成签到,获得积分10
5分钟前
6分钟前
zz发布了新的文献求助10
6分钟前
wanci应助火星上的柚子采纳,获得10
6分钟前
YOUZI完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
火星上的柚子完成签到,获得积分20
7分钟前
啦啦啦完成签到 ,获得积分10
7分钟前
7分钟前
Hello应助科研通管家采纳,获得10
7分钟前
Noob_saibot完成签到,获得积分10
9分钟前
Noob_saibot发布了新的文献求助10
9分钟前
科研通AI2S应助如意歌曲采纳,获得10
9分钟前
festum完成签到,获得积分10
10分钟前
Hasee完成签到 ,获得积分10
10分钟前
11分钟前
Akim应助慢慢的地理人采纳,获得10
11分钟前
cacaldon发布了新的文献求助50
11分钟前
cacaldon完成签到,获得积分10
12分钟前
dormraider完成签到,获得积分10
12分钟前
Artin发布了新的文献求助200
12分钟前
Artin完成签到,获得积分10
12分钟前
13分钟前
zai完成签到 ,获得积分10
13分钟前
FashionBoy应助科研通管家采纳,获得10
13分钟前
15分钟前
祖之微笑发布了新的文献求助30
15分钟前
Cassel完成签到,获得积分10
15分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126163
求助须知:如何正确求助?哪些是违规求助? 2776296
关于积分的说明 7729785
捐赠科研通 2431786
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622643
版权声明 600408