亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A vision transformer for emphysema classification using CT images

人工智能 计算机科学 模式识别(心理学) 计算机视觉
作者
Yanan Wu,Shouliang Qi,Yu Sun,Shuyue Xia,Yudong Yao,Wei Qian
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 245016-245016 被引量:47
标识
DOI:10.1088/1361-6560/ac3dc8
摘要

Objective. Emphysema is characterized by the destruction and permanent enlargement of the alveoli in the lung. According to visual CT appearance, emphysema can be divided into three subtypes: centrilobular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema (PSE). Automating emphysema classification can help precisely determine the patterns of lung destruction and provide a quantitative evaluation.Approach. We propose a vision transformer (ViT) model to classify the emphysema subtypes via CT images. First, large patches (61×61) are cropped from CT images which contain the area of normal lung parenchyma, CLE, PLE, and PSE. After resizing, the large patch is divided into small patches and these small patches are converted to a sequence of patch embeddings by flattening and linear embedding. A class embedding is concatenated to the patch embedding, and the positional embedding is added to the resulting embeddings described above. Then, the obtained embedding is fed into the transformer encoder blocks to generate the final representation. Finally, the learnable class embedding is fed to a softmax layer to classify the emphysema.Main results. To overcome the lack of massive data, the transformer encoder blocks (pre-trained on ImageNet) are transferred and fine-tuned in our ViT model. The average accuracy of the pre-trained ViT model achieves 95.95% in our lab's own dataset, which is higher than that of AlexNet, Inception-V3, MobileNet-V2, ResNet34, and ResNet50. Meanwhile, the pre-trained ViT model outperforms the ViT model without the pre-training. The accuracy of our pre-trained ViT model is higher than or comparable to that by available methods for the public dataset.Significance. The results demonstrated that the proposed ViT model can accurately classify the subtypes of emphysema using CT images. The ViT model can help make an effective computer-aided diagnosis of emphysema, and the ViT method can be extended to other medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiu发布了新的文献求助10
7秒前
顾矜应助狂发文章采纳,获得10
8秒前
9秒前
Djnsbj发布了新的文献求助10
14秒前
19秒前
狂发文章发布了新的文献求助10
22秒前
26秒前
寒冷苗条应助Djnsbj采纳,获得10
26秒前
小蘑菇应助Djnsbj采纳,获得10
26秒前
狂发文章完成签到,获得积分10
29秒前
30秒前
36秒前
duxiao发布了新的文献求助10
37秒前
hongtao发布了新的文献求助10
43秒前
50秒前
Mandy发布了新的文献求助10
55秒前
我好想睡完成签到,获得积分10
1分钟前
Iron_five完成签到 ,获得积分10
1分钟前
小二郎应助Mandy采纳,获得10
1分钟前
hongtao发布了新的文献求助10
1分钟前
多情的尔安完成签到,获得积分10
1分钟前
1分钟前
宝贝完成签到 ,获得积分10
2分钟前
hongtao发布了新的文献求助10
2分钟前
2分钟前
2分钟前
凯旋预言完成签到 ,获得积分10
2分钟前
Djnsbj发布了新的文献求助10
2分钟前
2分钟前
花陵完成签到 ,获得积分10
2分钟前
2分钟前
共享精神应助Djnsbj采纳,获得10
3分钟前
隐形曼青应助556采纳,获得10
3分钟前
李健的小迷弟应助556采纳,获得10
3分钟前
ShiYanYang完成签到,获得积分10
4分钟前
4分钟前
frap完成签到,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155648
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214