A vision transformer for emphysema classification using CT images

人工智能 计算机科学 模式识别(心理学) 计算机视觉
作者
Yanan Wu,Shouliang Qi,Yu Sun,Shuyue Xia,Yudong Yao,Wei Qian
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 245016-245016 被引量:47
标识
DOI:10.1088/1361-6560/ac3dc8
摘要

Objective. Emphysema is characterized by the destruction and permanent enlargement of the alveoli in the lung. According to visual CT appearance, emphysema can be divided into three subtypes: centrilobular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema (PSE). Automating emphysema classification can help precisely determine the patterns of lung destruction and provide a quantitative evaluation.Approach. We propose a vision transformer (ViT) model to classify the emphysema subtypes via CT images. First, large patches (61×61) are cropped from CT images which contain the area of normal lung parenchyma, CLE, PLE, and PSE. After resizing, the large patch is divided into small patches and these small patches are converted to a sequence of patch embeddings by flattening and linear embedding. A class embedding is concatenated to the patch embedding, and the positional embedding is added to the resulting embeddings described above. Then, the obtained embedding is fed into the transformer encoder blocks to generate the final representation. Finally, the learnable class embedding is fed to a softmax layer to classify the emphysema.Main results. To overcome the lack of massive data, the transformer encoder blocks (pre-trained on ImageNet) are transferred and fine-tuned in our ViT model. The average accuracy of the pre-trained ViT model achieves 95.95% in our lab's own dataset, which is higher than that of AlexNet, Inception-V3, MobileNet-V2, ResNet34, and ResNet50. Meanwhile, the pre-trained ViT model outperforms the ViT model without the pre-training. The accuracy of our pre-trained ViT model is higher than or comparable to that by available methods for the public dataset.Significance. The results demonstrated that the proposed ViT model can accurately classify the subtypes of emphysema using CT images. The ViT model can help make an effective computer-aided diagnosis of emphysema, and the ViT method can be extended to other medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yanghuanyu完成签到 ,获得积分10
刚刚
Tutu完成签到,获得积分10
1秒前
111发布了新的文献求助10
2秒前
无聊的面包完成签到,获得积分10
3秒前
Ava应助专注的兰采纳,获得10
3秒前
叶枫寒完成签到 ,获得积分10
4秒前
June完成签到,获得积分10
4秒前
4秒前
彼岸发布了新的文献求助10
4秒前
5秒前
森葵发布了新的文献求助10
5秒前
英俊的铭应助Uaena采纳,获得10
7秒前
赘婿应助陈82采纳,获得20
7秒前
8秒前
9秒前
关中大侠的涮肉坊完成签到,获得积分10
9秒前
9秒前
肚子好e啊完成签到 ,获得积分10
10秒前
夜神月发布了新的文献求助10
11秒前
Genius完成签到,获得积分10
11秒前
12秒前
英姑应助亦玉采纳,获得10
12秒前
wdddr发布了新的文献求助10
14秒前
Davidjun完成签到,获得积分10
14秒前
15秒前
15秒前
王乾宇完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助很好采纳,获得10
17秒前
嘻嘻哈哈应助Tutu采纳,获得10
19秒前
彭于晏应助zhang采纳,获得10
19秒前
Peyton Why完成签到,获得积分10
19秒前
19秒前
浮游应助年轻的绿凝采纳,获得30
19秒前
CodeCraft应助森葵采纳,获得10
20秒前
20秒前
浮游应助瓜瓜采纳,获得10
21秒前
23秒前
最佳发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308512
求助须知:如何正确求助?哪些是违规求助? 4453661
关于积分的说明 13857726
捐赠科研通 4341377
什么是DOI,文献DOI怎么找? 2383861
邀请新用户注册赠送积分活动 1378491
关于科研通互助平台的介绍 1346482