A vision transformer for emphysema classification using CT images

嵌入 编码器 人工智能 变压器 计算机科学 Softmax函数 模式识别(心理学) 计算机视觉 医学 人工神经网络 物理 电压 内科学 量子力学 操作系统
作者
Yanan Wu,Shouliang Qi,Yu Sun,Shuyue Xia,Yu‐Dong Yao,Wei Qian
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 245016-245016 被引量:42
标识
DOI:10.1088/1361-6560/ac3dc8
摘要

Abstract Objective . Emphysema is characterized by the destruction and permanent enlargement of the alveoli in the lung. According to visual CT appearance, emphysema can be divided into three subtypes: centrilobular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema (PSE). Automating emphysema classification can help precisely determine the patterns of lung destruction and provide a quantitative evaluation. Approach . We propose a vision transformer (ViT) model to classify the emphysema subtypes via CT images. First, large patches (61 × 61) are cropped from CT images which contain the area of normal lung parenchyma, CLE, PLE, and PSE. After resizing, the large patch is divided into small patches and these small patches are converted to a sequence of patch embeddings by flattening and linear embedding. A class embedding is concatenated to the patch embedding, and the positional embedding is added to the resulting embeddings described above. Then, the obtained embedding is fed into the transformer encoder blocks to generate the final representation. Finally, the learnable class embedding is fed to a softmax layer to classify the emphysema. Main results . To overcome the lack of massive data, the transformer encoder blocks (pre-trained on ImageNet) are transferred and fine-tuned in our ViT model. The average accuracy of the pre-trained ViT model achieves 95.95% in our lab’s own dataset, which is higher than that of AlexNet, Inception-V3, MobileNet-V2, ResNet34, and ResNet50. Meanwhile, the pre-trained ViT model outperforms the ViT model without the pre-training. The accuracy of our pre-trained ViT model is higher than or comparable to that by available methods for the public dataset. Significance . The results demonstrated that the proposed ViT model can accurately classify the subtypes of emphysema using CT images. The ViT model can help make an effective computer-aided diagnosis of emphysema, and the ViT method can be extended to other medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助缓慢思枫采纳,获得30
刚刚
世上无难事完成签到 ,获得积分10
2秒前
搜集达人应助Qqqqqq采纳,获得10
3秒前
风止完成签到 ,获得积分10
5秒前
青思发布了新的文献求助10
5秒前
张流筝完成签到 ,获得积分10
7秒前
InfoNinja应助追寻的山晴采纳,获得30
8秒前
11秒前
12秒前
tanhaowen完成签到 ,获得积分10
13秒前
zho应助煮饭吃Zz采纳,获得10
14秒前
AoAoo发布了新的文献求助10
14秒前
时尚的电脑完成签到 ,获得积分10
14秒前
kobespecial发布了新的文献求助30
16秒前
啊楠发布了新的文献求助10
16秒前
搁浅发布了新的文献求助10
17秒前
17秒前
18秒前
李圣杰完成签到 ,获得积分10
18秒前
谨慎傲旋完成签到 ,获得积分10
20秒前
姜呱呱呱完成签到,获得积分10
20秒前
man完成签到,获得积分10
20秒前
科研通AI2S应助Diudu采纳,获得10
22秒前
22秒前
田田完成签到 ,获得积分10
23秒前
026完成签到 ,获得积分10
23秒前
小二郎应助aq22采纳,获得30
23秒前
24秒前
哟哟哟发布了新的文献求助10
24秒前
25秒前
30秒前
30秒前
李圣杰关注了科研通微信公众号
30秒前
愤怒的豌豆完成签到,获得积分10
32秒前
思南欧完成签到,获得积分10
32秒前
活泼的寒安完成签到 ,获得积分10
34秒前
34秒前
NexusExplorer应助milu采纳,获得10
36秒前
幺幺要过万完成签到,获得积分10
37秒前
lxj发布了新的文献求助20
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159782
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889078
捐赠科研通 2469740
什么是DOI,文献DOI怎么找? 1315055
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012