A vision transformer for emphysema classification using CT images

人工智能 计算机科学 模式识别(心理学) 计算机视觉
作者
Yanan Wu,Shouliang Qi,Yu Sun,Shuyue Xia,Yudong Yao,Wei Qian
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 245016-245016 被引量:47
标识
DOI:10.1088/1361-6560/ac3dc8
摘要

Objective. Emphysema is characterized by the destruction and permanent enlargement of the alveoli in the lung. According to visual CT appearance, emphysema can be divided into three subtypes: centrilobular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema (PSE). Automating emphysema classification can help precisely determine the patterns of lung destruction and provide a quantitative evaluation.Approach. We propose a vision transformer (ViT) model to classify the emphysema subtypes via CT images. First, large patches (61×61) are cropped from CT images which contain the area of normal lung parenchyma, CLE, PLE, and PSE. After resizing, the large patch is divided into small patches and these small patches are converted to a sequence of patch embeddings by flattening and linear embedding. A class embedding is concatenated to the patch embedding, and the positional embedding is added to the resulting embeddings described above. Then, the obtained embedding is fed into the transformer encoder blocks to generate the final representation. Finally, the learnable class embedding is fed to a softmax layer to classify the emphysema.Main results. To overcome the lack of massive data, the transformer encoder blocks (pre-trained on ImageNet) are transferred and fine-tuned in our ViT model. The average accuracy of the pre-trained ViT model achieves 95.95% in our lab's own dataset, which is higher than that of AlexNet, Inception-V3, MobileNet-V2, ResNet34, and ResNet50. Meanwhile, the pre-trained ViT model outperforms the ViT model without the pre-training. The accuracy of our pre-trained ViT model is higher than or comparable to that by available methods for the public dataset.Significance. The results demonstrated that the proposed ViT model can accurately classify the subtypes of emphysema using CT images. The ViT model can help make an effective computer-aided diagnosis of emphysema, and the ViT method can be extended to other medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助hy1234采纳,获得30
1秒前
yuanyuan发布了新的文献求助10
1秒前
老Mark完成签到,获得积分10
1秒前
pppp完成签到,获得积分20
1秒前
demoliu完成签到,获得积分10
2秒前
小二郎应助西柚柠檬采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
CipherSage应助。?。采纳,获得10
4秒前
6秒前
科研通AI5应助yuanyuan采纳,获得10
7秒前
躺平girl完成签到,获得积分10
7秒前
饭宝完成签到,获得积分10
7秒前
7秒前
hbzyydx46完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
Lucas应助duxh123采纳,获得10
9秒前
实验好难应助能干数据线采纳,获得10
10秒前
11秒前
11秒前
peipei发布了新的文献求助10
12秒前
韩钰小宝发布了新的文献求助10
12秒前
13秒前
yuanyuan完成签到,获得积分10
13秒前
Mwwwwww完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
爱笑涵梅关注了科研通微信公众号
15秒前
16秒前
科研通AI5应助Tonsil01采纳,获得10
16秒前
17秒前
18秒前
科研通AI5应助纯真糖豆采纳,获得10
18秒前
19秒前
李健应助li采纳,获得10
19秒前
19秒前
Hope发布了新的文献求助10
20秒前
淡定的月饼完成签到,获得积分10
21秒前
cdercder应助Rui豆豆采纳,获得20
22秒前
安静复天完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664226
求助须知:如何正确求助?哪些是违规求助? 3224388
关于积分的说明 9757079
捐赠科研通 2934289
什么是DOI,文献DOI怎么找? 1606806
邀请新用户注册赠送积分活动 758804
科研通“疑难数据库(出版商)”最低求助积分说明 735010