亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of segmentation of lung parenchyma based on deep learning methods

分割 Sørensen–骰子系数 薄壁组织 掷骰子 计算机科学 人工智能 计算机断层摄影术 特征(语言学) 模式识别(心理学) 医学 图像分割 放射科 病理 数学 统计 语言学 哲学 内科学
作者
Wenjun Tan,Peifang Huang,Xiaoshuo Li,Genqiang Ren,Yufei Chen,Jinzhu Yang
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (6): 945-959 被引量:19
标识
DOI:10.3233/xst-210956
摘要

Precise segmentation of lung parenchyma is essential for effective analysis of the lung. Due to the obvious contrast and large regional area compared to other tissues in the chest, lung tissue is less difficult to segment. Special attention to details of lung segmentation is also needed. To improve the quality and speed of segmentation of lung parenchyma based on computed tomography (CT) or computed tomography angiography (CTA) images, the 4th International Symposium on Image Computing and Digital Medicine (ISICDM 2020) provides interesting and valuable research ideas and approaches. For the work of lung parenchyma segmentation, 9 of the 12 participating teams used the U-Net network or its modified forms, and others used the methods to improve the segmentation accuracy include attention mechanism, multi-scale feature information fusion. Among them, U-Net achieves the best results including that the final dice coefficient of CT segmentation is 0.991 and the final dice coefficient of CTA segmentation is 0.984. In addition, attention U-Net and nnU-Net network also performs well. In this paper, the methods chosen by 12 teams from different research groups are evaluated and their segmentation results are analyzed for the study and references to those involved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ZaZa完成签到,获得积分10
8秒前
8秒前
张家宁发布了新的文献求助10
14秒前
着急的冬瓜完成签到 ,获得积分10
18秒前
40秒前
可爱的函函应助小小K采纳,获得10
41秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
Suu发布了新的文献求助10
46秒前
bkagyin应助烟消云散采纳,获得10
47秒前
49秒前
兔子完成签到,获得积分10
50秒前
小小K发布了新的文献求助10
54秒前
田様应助不可靠的黏菌采纳,获得10
1分钟前
打打应助zilhua采纳,获得10
1分钟前
CipherSage应助肥猪采纳,获得10
1分钟前
1分钟前
徐矜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
肥猪发布了新的文献求助10
1分钟前
烟消云散发布了新的文献求助10
1分钟前
Jiayouya完成签到,获得积分10
1分钟前
NexusExplorer应助石榴汁的书采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
肥猪完成签到,获得积分10
1分钟前
赘婿应助Zhao0112采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
陈毅发布了新的文献求助10
2分钟前
吴端完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
PP发布了新的文献求助10
2分钟前
2分钟前
耿双贵发布了新的文献求助30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765