同时定位和映射
人工智能
稳健性(进化)
计算机科学
计算机视觉
初始化
约束(计算机辅助设计)
对象(语法)
移动机器人
可扩展性
机器人学
机器人
数学
数据库
生物化学
基因
化学
程序设计语言
几何学
作者
Ziwei Liao,Yutong Hu,Jiadong Zhang,Xianyu Qi,Xiaoyu Zhang,Wei Wang
出处
期刊:IEEE robotics and automation letters
日期:2022-02-07
卷期号:7 (2): 4008-4015
被引量:40
标识
DOI:10.1109/lra.2022.3148465
摘要
Object SLAM introduces the concept of objects into Simultaneous Localization and Mapping (SLAM) and helps understand indoor scenes for mobile robots and object-level interactive applications. The state-of-art object SLAM systems face challenges such as partial observations, occlusions, unobservable problems, limiting the mapping accuracy and robustness. This letter proposes a novel monocular Semantic Object SLAM (SO-SLAM) system that addresses the introduction of object spatial constraints. We explore three representative spatial constraints, including scale proportional constraint, symmetrical texture constraint and plane supporting constraint. Based on these semantic constraints, we propose two new methods - a more robust object initialization method and an orientation fine optimization method. We have verified the performance of the algorithm on the public datasets and an author-recorded mobile robot dataset and achieved a significant improvement on mapping effects. We will release the code here. 1
科研通智能强力驱动
Strongly Powered by AbleSci AI